Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 326: 121654, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142084

RESUMO

Although flexible double layer capacitors based on hydrogels overcome the drawbacks of commercial double layer capacitors such as low safety and non-deformability, it is still considered as attractive challenges to achieve high conductivity for hydrogel electrolytes as well as high operating voltages for hydrogel flexible supercapacitors. In this paper, ion migration channels were engineered by immobilizing positive and negative charges on polymer skeleton and dispersing cellulose nanofibers in the polymerized polyelectrolyte network, providing ultra-high ionic conductivity (103 mS cm-1). In addition, K3[Fe(CN)6] was introduced through a soaking method, leading to redox reactions on the surface of carbon electrode during charging and discharging, supporting a relatively wide voltage window (1.8 V). Moreover, the specific capacitance at high current remained 55 % of the specific capacitance at low current, indicating excellent rate performance. In addition, the device displayed high cycling stability (80.05 % after 10,000 cycles). Notably, we successfully light up the red LED with only one device. Accordingly, this work provides a feasible design concept for the development of cellulose nanofibers (CNF) hydrogel-based solid-state electrolyte with high conductivity for flexible supercapacitors with wide potential window and high energy density.

2.
Appl Opt ; 58(2): 274-282, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645312

RESUMO

We investigated the influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome. Boundary conditions for the aerodynamic heating effect of the optical dome were calculated by solving the Reynolds-averaged Navier-Stokes equations provided by FLUENT. The finite element model and the thermal-structure simulation results of the optical dome were obtained using ANSYS. The 3D nonuniform refractive index field of the optical dome was obtained according to the thermal-optical effect. The optical tracking method based on the fourth-order Runge-Kutta algorithm was adopted to simulate the optical transmission through the optical dome. The Strehl ratio (SR), encircled energy, distorted target images, and peak signal-to-noise ratio were presented for imaging quality evaluation. The variation rules of these imaging quality evaluation parameters were obtained in the altitude range of 0-45 km. The results showed that, in the same flight conditions, with the increase of altitude, peak signal-to-noise ratio (PSNR) of the distorted image, and SR result were increased, and radiuses of dispersion spots, including 80% energy, were decreased; therefore, the influence of aero-optics effect on imaging quality degradation was gradually weakened.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...