Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nurs Philos ; 25(3): e12491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973119

RESUMO

In this article, I try to document the lived experiences of nurses who were sent to Wuhan to work in the COVID-19 wards and consider the impact of such experiences on their psychological well-being. I show the contextual factors in Wuhan, the inherent nature of nursing during the pandemic and the transition from the immediate reactions of nurses to long-term impacts on their personalities, formed through the whole process of abjection. Therefore, I argue that we need to consider how nursing experiences, before, during and after their professional work in the wards, would instigate abjection within nurses. The abjection of nurses does not start only from the ward, nor does it not end in the ward. Rather, the abjection of nurses, as a reaction to lived experiences, is nuanced and the study of it can reveal rich details of nurses' life both inside and outside of the ward.


Assuntos
COVID-19 , Humanos , COVID-19/enfermagem , COVID-19/psicologia , China , Enfermeiras e Enfermeiros/psicologia , Pandemias , Atitude do Pessoal de Saúde , SARS-CoV-2
2.
Microorganisms ; 12(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38930531

RESUMO

Cherry tomatoes, a very popular fruit, are highly susceptible to microbial infestation, which cause significant economic losses. In order to preserve cherry tomatoes better, we treat them with a Chitosan (CTS) and Curdlan (CUR) composite coating. The lowest inhibitory concentration of CTS/CUR composite coating on Serratia marcescens and Pseudomonas syringae, the growth curves, and the changes of the cell lysis rate were determined to explore the inhibitory mechanism of CTS/CUR composite coating on Serratia marcescens and Pseudomonas syringae and the microscopic morphology of Serratia marcescens and Pseudomonas syringae was observed using scanning electron microscopy at the same time. The results showed that the CTS/CUR composite coating could effectively inhibit the growth of Serratia marcescens and Pseudomonas, and the inhibitory effect reflected the concentration-dependent characteristics. The electron microscopy results indicated that the inhibition of Serratia marcescens and Pseudomonas syringae by the CTS/CUR composite coating might originate from its disruptive effect on the cell wall and cell membrane of the bacterium.

3.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731701

RESUMO

This study focused on developing a Pickering emulsion fresh-keeping paper that contained clove essential oil (CEO). Cherry tomatoes served as the test material for assessing the preservative efficacy of fresh-keeping paper. The results showed that Pickering emulsion had strong stability. Additionally, the fresh-keeping paper had a good antioxidant activity and sustained-release effect on CEO. In terms of the preservation effect, 0.75 wt% CEO Pickering emulsion paper reduced the decay incidence and weight loss of cherry tomatoes during 12-day storage. Fresh-keeping paper could also play a positive role in protecting the sensory index and color difference of tomatoes. It slowed the decline rate of soluble solid concentration (SSC) and titrable acid (TA). The vitamin C (Vc) and hardness of preserved tomatoes using fresh-keeping paper were maintained at a high level. The paper also inhibited the growth of microorganisms significantly. Therefore, 0.75 wt% CEO Pickering emulsion fresh-keeping paper displayed considerable potential for application in the preservation of postharvest fruits and vegetables. It is a novel fruit and vegetable preservation material worthy of development.

4.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566515

RESUMO

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Assuntos
Capsicum , Quitosana , Tamarindus , Antioxidantes/farmacologia , Antioxidantes/análise , Polilisina/farmacologia , Polilisina/química , Capsicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Polissacarídeos/farmacologia , Sementes/química , Quitosana/química
5.
Antioxidants (Basel) ; 13(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38671879

RESUMO

The utilization of functional cling films presents a promising approach to alleviate post-harvest spoilage caused by microbial activity, oxidative metabolism, and moisture loss in agricultural products. To overcome the environmental problems of conventional packaging materials, in this study, we developed functional fruit and vegetable cling films based on glycidyltrimethylammonium chloride and rosemarinic acid cross-linked gelatin (RQ-GEL). The results indicate that the prepared RQ-GEL film possesses excellent UV light barrier properties and mechanical performance. RQ-GEL inhibited S. aureus and E. coli by 93.79% and 92.04%, respectively. DPPH and ABTS free radical scavenging activities were as high as 87.69% and 84.6%. In the cherry tomato preservation experiment, when compared to uncovered samples, the RQ-GEL group had a 29.77% reduction in weight loss and a significant 26.92% reduction in hardness. Meanwhile, the RQ-GEL group delays the decline of fruit total soluble solids and titratable acidity content, and prolongs the preservation period of cherry tomatoes. Hence, RQ-GEL cling film is poised to emerge as a promising packaging material for the post-harvest preservation of agricultural products.

6.
J Alzheimers Dis Rep ; 8(1): 461-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549642

RESUMO

Background: Neuronal loss occurs early and is recognized as a hallmark of Alzheimer's disease (AD). Promoting neurogenesis is an effective treatment strategy for neurodegenerative diseases. Traditional Chinese herbal medicines serve as a rich pharmaceutical source for modulating hippocampal neurogenesis. Objective: Gallic acid (GA), a phenolic acid extracted from herbs, possesses anti-inflammatory and antioxidant properties. Therefore, we aimed to explore whether GA can promote neurogenesis and alleviate AD symptoms. Methods: Memory in mice was assessed using the Morris water maze, and protein levels were examined via western blotting and immunohistochemistry. GA's binding site in the promoter region of transcription regulator nuclear factor erythroid 2-related factor 2 (Nrf2) was calculated using AutoDock Vina and confirmed by a dual luciferase reporter assay. Results: We found that GA improved spatial memory by promoting neurogenesis in the hippocampal dentate gyrus zone. It also improved synaptic plasticity, reduced tau phosphorylation and amyloid-ß concentration, and increased levels of synaptic proteins in APP/PS1 mice. Furthermore, GA inhibited the activity of glycogen synthase kinase-3ß (GSK-3ß). Bioinformatics tools revealed that GA interacts with several amino acid sites on GSK-3ß. Overexpression of GSK-3ß was observed to block the protective effects of GA against AD-like symptoms, while GA promoted neurogenesis via the GSK-3ß-Nrf2 signaling pathway in APP/PS1 mice. Conclusions: Based on our collective findings, we hypothesize that GA is a potential pharmaceutical agent for alleviating the pathological symptoms of AD.

7.
Food Funct ; 15(7): 3446-3462, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38450419

RESUMO

Endothelial dysfunction (ED) is an initiating trigger and key factor in vascular complications, leading to disability and mortality in individuals with diabetes. The research concerning therapeutic interventions for ED has gained considerable interest. Fenugreek, a commonly used edible plant in dietary consumption, has attracted significant attention due to its management of diabetes and its associated complications. The research presented in this study examines the potential therapeutic benefits of fenugreek in treating ED and investigates the underlying mechanism associated with its effects. The analysis on fenugreek was performed using 70% ethanol extract, and its chemical composition was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). In total, we identified 49 compounds present in the fenugreek extract. These compounds encompass flavonoids, saponins, and phospholipids. Then, the models of ED in streptozotocin-induced diabetic mice and high glucose-induced isolated rat aortas were established for research. Through vascular function testing, it was observed that fenugreek extract effectively improved ED induced by diabetes or high glucose. By analyzing the protein expression of arginase 1 (Arg1), Arg activity, Arg1 immunohistochemistry, nitric oxide (NO) level, and the protein expression of endothelial nitric oxide synthase (eNOS), p38 mitogen-activated protein kinase (p38 MAPK), and p-p38 MAPK in aortas, this study revealed that the potential mechanism of fenugreek extract in anti-ED involves the downregulation of Arg1, leading to enhanced NO production. Furthermore, analysis of serum exosomes carrying Arg activity indicates that fenugreek may decrease the activity of Arg transported by serum exosomes, potentially preventing the increase in Arg levels triggered by the uptake of serum exosomes by vascular endothelial cells. In general, this investigation offers valuable observations regarding the curative impact of fenugreek extract on anti-ED in diabetes, revealing the involvement of the Arg1 pathway in its mechanism.


Assuntos
Diabetes Mellitus Experimental , Células Endoteliais , Extratos Vegetais , Trigonella , Ratos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Arginase , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Glucose/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
8.
Microorganisms ; 12(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399764

RESUMO

Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables.

9.
Foods ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338576

RESUMO

This study focused on developing a composite coating comprising water-soluble chitosan (CTS) and curdlan (CUR). Cherry tomatoes served as the test material for assessing the preservative efficacy of these coatings. The incorporation of CUR markedly enhanced the coating's surface properties, refined its molecular structure, and improved its tensile strength and elongation at break. Additionally, the coating demonstrated enhanced permeability to water vapor, oxygen, and carbon dioxide and improved light transmission. The storage experiment, conducted at 25 ± 1 °C with a relative humidity of approximately 92% over 10 days, revealed that the CTS/CUR composite coating at a 1:1 ratio significantly outperformed the individual CTS or CUR coating and uncoated samples in maintaining the quality of postharvest cherry tomatoes. The 1:1 CTS/CUR composite coating demonstrated superior preservative effects. This study suggested that water-soluble chitosan/curdlan composite coatings have considerable potential for use in the preservation of postharvest fruits and vegetables.

10.
J Fungi (Basel) ; 10(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392823

RESUMO

Alternaria alternata is the main pathogenic fungus of postharvest black spots in fruits and vegetables. This study aimed to explore the antifungal activity of methionine on A. alternata in vitro and to reveal related antifungal mechanisms through a metabolomics analysis. The results showed that the inhibitory effects of L-methionine (Met) treatment on mycelium growth, spore germination, and the germ tube elongation of A. alternata were enhanced with an increase in the Met concentration, but the inhibitory effects decreased when the Met concentration was higher than 50 mmolL-1. The results of propidium iodide staining and scanning electron microscopy showed that the Met treatment damaged the plasma membrane integrity of the A. alternata spores and caused an irreversible deformation of mycelium. In addition, after the Met treatment, the leakage of electrolytes, nucleic acid, and proteins in the A. alternata cells was significantly higher than that in the control group, indicating that the Met treatment increased the permeability of the cell membranes. Eighty-one different metabolites, divided into seven categories, were identified through the metabolomics analysis, including forty-three downregulated metabolites and thirty-eight upregulated metabolites. Among them, these differential metabolites were mainly involved in amino acid synthesis and metabolism, the pentose phosphate pathway, and the TCA cycle. Therefore, the antifungal effect of the Met treatment on A. alternata was mainly to damage the integrity of the cell membranes, make nucleic acid and protein contents leak, and affect the TCA cycle, carbohydrate metabolism, amino acid synthesis metabolism, and the metabolic pathways associated with cell membrane biosynthesis. Thus, the growth and development of A. alternata were inhibited. The research enriched the investigation of the effect of the antifungal mechanism of Met treatment on A. alternata and provided a theoretical basis for the application of Met to prevent and treat postharvest black spots in fruits and vegetables.

11.
Nat Chem Biol ; 20(7): 847-856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38167918

RESUMO

Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.


Assuntos
Ativação do Canal Iônico , Canal de Potássio KCNQ2 , Simulação de Dinâmica Molecular , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/química , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Animais , Técnicas de Patch-Clamp , Microscopia Crioeletrônica , Células HEK293 , Relação Estrutura-Atividade
12.
Plant Physiol Biochem ; 206: 108239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113720

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTHs) play a crucial role in plant growth and development. However, their functional response to phytohormone in sugar beet still remains obscure. In this study, we identified 30 putative BvXTH genes in the sugar beet genome. Phylogenetic and evolutionary relationship analysis revealed that they were clustered into three groups and have gone through eight tandem duplication events under purifying selection. Gene structure and motif composition analysis demonstrated that they were highly conserved and all contained one conserved glycoside hydrolase family 16 domain (Glyco_hydro_16) and one xyloglucan endotransglycosylase C-terminus (XET_C) domain. Transcriptional expression analysis exhibited that all BvXTHs were ubiquitously expressed in leaves, root hairs and tuberous roots, and most of them were up-regulated by brassinolide (BR), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA3). Further mutant complementary experiment demonstrated that expression of BvXTH17 rescued the retarded growth phenotype of xth22, an Arabidopsis knock out mutant of AtXTH22. The findings in our work provide fundamental information on the structure and evolutionary relationship of the XTH family genes in sugar beet, and reveal the potential function of BvXTH17 in plant growth and hormone response.


Assuntos
Arabidopsis , Beta vulgaris , Reguladores de Crescimento de Plantas , Beta vulgaris/genética , Beta vulgaris/metabolismo , Filogenia , Glicosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glicosídeo Hidrolases/metabolismo , Açúcares , Regulação da Expressão Gênica de Plantas
13.
Front Plant Sci ; 14: 1271329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771491

RESUMO

Constitutive photomorpogenic dwarf (CPD) is a pivotal enzyme gene for brassinolide (BR) synthesis and plays an important role in plant growth, including increasing plant biomass and plant height, elongating cells, and promoting xylem differentiation. However, little is known about the function of the CPD gene in sugar beet. In the current study, we isolated CPD from Beta vulgaris L. (BvCPD), which encodes protein localized in the nucleus, cell membrane, and cell wall. BvCPD was strongly expressed in parenchyma cells and vascular bundles. The transgenic sugar beet overexpressing BvCPD exhibited larger diameter than that of the wild type (WT), which mainly owing to the increased number and size of parenchyma cells, the enlarged lumen and area of vessel in the xylem. Additionally, overexpression of BvCPD increased the synthesis of endogenous BR, causing changes in the content of endogenous auxin (IAA) and gibberellin (GA) and accumulation of cellulose and lignin in cambium 1-4 rings of the taproot. These results suggest that BvCPD can promote the biosynthesis of endogenous BR, improve cell wall components, promote the development of parenchyma cells and vascular bundle, thereby playing an important role in promoting the growth and development of sugar beet taproot.

14.
Soc Sci Med ; 329: 116033, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37379636

RESUMO

This paper examines the daily practices of caring for COVID-19 patients in Wuhan, China, in early 2020 and the challenges that nurses faced. The paper shows that the affective contagion, especially among patients, introduced unexpected challenges for nurses in caring for COVID-19-infected patients. Nurses had to contend with the challenges of treating both physical and psychological problems in patients simultaneously. As a result, it was necessary for nurses to adapt to the different rhythm of COVID-19 wards to address these challenges and do so through taking on a range of general and specific nursing tasks and playing a diverse range of roles on the wards, from garbage collector to "psychological counselor." Thus, the paper brings attention to the experiences and demands of providing nursing care in an emergency pandemic context, in particular the necessity of responding to both the physical and the psychological needs of patients. These insights could better prepare health services in China and elsewhere in the world for responding effectively to potential future pandemics.


Assuntos
COVID-19 , Enfermeiras e Enfermeiros , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Surtos de Doenças/prevenção & controle , China/epidemiologia
15.
Hepatology ; 77(5): 1612-1629, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098707

RESUMO

BACKGROUND AND AIMS: Monocyte-derived macrophages (MoMFs), a dominant population of hepatic macrophages under inflammation, play a crucial role in liver fibrosis progression. The spleen serves as an extra monocyte reservoir in inflammatory conditions; however, the precise mechanisms of involvement of the spleen in the pathogenesis of liver fibrosis remain unclear. APPROACH AND RESULTS: By splenectomy and splenocyte transfusion, it was observed that splenic CD11b + cells accumulated intrahepatically as Ly6C lo MoMFs to exacerbate CCl 4 -induced liver fibrosis. The splenocyte migration into the fibrotic liver was further directly visualized by spleen-specific photoconversion with KikGR mice and confirmed by CD45.1 + /CD45.2 + spleen transplantation. Spleen-derived CD11b + cells purified from fibrotic livers were then annotated by single-cell RNA sequencing, and a subtype of CD11b + CD43 hi Ly6C lo splenic monocytes (sM-1s) was identified, which was markedly expanded in both spleens and livers of mice with liver fibrosis. sM-1s exhibited mature feature with high expressions of F4/80, produced much ROS, and manifested preferential migration into livers. Once recruited, sM-1s underwent sequential transformation to sM-2s (highly expressed Mif , Msr1 , Clec4d , and Cstb ) and then to spleen-derived macrophages (sMφs) with macrophage features of higher expressions of CX 3 CR1, F4/80, MHC class II, and CD64 in the fibrotic hepatic milieu. Furthermore, sM-2s and sMφs were demonstrated capable of activating hepatic stellate cells and thus exacerbating liver fibrosis. CONCLUSIONS: CD11b + CD43 hi Ly6C lo splenic monocytes migrate into the liver and shift to macrophages, which account for the exacerbation of liver fibrosis. These findings reveal precise mechanisms of spleen-liver axis in hepatic pathogenesis and shed light on the potential of sM-1 as candidate target for controlling liver diseases.


Assuntos
Macrófagos , Baço , Camundongos , Animais , Baço/patologia , Macrófagos/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Monócitos/metabolismo , Camundongos Endogâmicos C57BL
16.
Front Immunol ; 13: 941721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052075

RESUMO

The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.


Assuntos
Hepatopatias , Tecido Adiposo/patologia , Animais , Homeostase , Hepatopatias/patologia , Baço/patologia
17.
Front Physiol ; 13: 941585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936909

RESUMO

To investigate the changes in proteins, metabolites, and related mechanisms in the hypothalamus of pregnant rats after circadian rhythm inversion during the whole pregnancy cycle. A total of 12 Wistar female rats aged 7 weeks were randomly divided into control (six rats) and experimental (six rats) groups at the beginning of pregnancy. The control group followed a 12-h light and dark cycle (6 a.m. to 6 p.m. light, 6 p.m. to 6 a.m. dark the next day), and the experimental group followed a completely inverted circadian rhythm (6 p.m. to 6 a.m. light the next day, 6 a.m. to 6 p.m. dark). Postpartum data were collected until 7-24 h after delivery, and hypothalamus samples were collected in two groups for quantitative proteomic and metabolism analyses. The differential proteins and metabolites of the two groups were screened by univariate combined with multivariate statistical analyses, and the differential proteins and metabolites enriched pathways were annotated with relevant databases to analyze the potential mechanisms after circadian rhythm inversion. A comparison of postpartum data showed that circadian rhythm inversion can affect the number of offspring and the average weight of offspring in pregnant rats. Compared with the control group, the expression of 20 proteins and 37 metabolites was significantly changed in the experimental group. The integrated analysis between proteins and metabolites found that RGD1562758 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) proteins were closely associated with carbon metabolism (choline, NAD+, L-glutamine, theobromine, D-fructose, and pyruvate) and glycerophospholipid metabolism (choline, NAD+, L-glutamine, phosphatidylcholine, theobromine, D-fructose, pyruvate, and arachidonate). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differential metabolites enriched in adenosine triphosphate (ATP)-binding cassette (ABC) transporters. Our study suggested that circadian rhythm inversion in pregnant rats may affect the numbers, the average weight of offspring, and the expressions of proteins and metabolism in the hypothalamus, which may provide a comprehensive overview of the molecular profile of circadian rhythm inversion in pregnant groups.

18.
Front Plant Sci ; 13: 882753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909753

RESUMO

Sugar beet taproot growth and development is a complex biological process involving morphogenesis and dry matter accumulation. However, the molecular regulatory mechanisms underlying taproot growth and development remain elusive. We performed a correlation analysis of the proteome and transcriptome in two cultivars (SD13829 and BS02) at the start and the highest points of the taproot growth rate. The corresponding correlation coefficients were 0.6189, 0.7714, 0.6803, and 0.7056 in four comparison groups. A total of 621 genes were regulated at both transcriptional and translational levels, including 190, 71, 140, and 220 in the BS59-VS-BS82, BS59-VS-SD59, BS82-VS-SD82, and SD59-VS-SD82 groups, respectively. Ten, 32, and 68 correlated-DEGs-DEPs (cor-DEGs-DEPs) were significantly enrdiched in the proteome and transcriptome of the BS59-VS-BS82, SD59-VS-SD82, and BS82-VS-SD82 groups, respectively, which included ribonuclease 1-like protein, DEAD-box ATP-dependent RNA helicase, TolB protein, heat shock protein 83, 20 kDa chaperonin, polygalacturonase, endochitinase, brassinolide and gibberellin receptors (BRI1 and GID1), and xyloglucan endotransglucosylase/hydrolase (XTH). In addition, Beta vulgaris XTH could enhance the growth and development of Arabidopsis primary roots by improving cell growth in the root tip elongation zone. These findings suggested that taproot growth and expansion might be regulated at transcriptional and posttranscriptional levels and also may be attributed to cell wall metabolism to improve cell wall loosening and elongation.

19.
Zhongguo Zhen Jiu ; 42(8): 891-8, 2022 Aug 12.
Artigo em Chinês | MEDLINE | ID: mdl-35938332

RESUMO

OBJECTIVE: To investigate the differential characteristics of plasma mircoRNA (miRNA) expression profile in the patients of moderate-to-severe allergic rhinitis treated with acupuncture so as to provide an index for screening the potential biomarkers of acupuncture efficacy. METHODS: Of 33 patients of moderate-to-severe allergic rhinitis underwent acupuncture, the superior efficacy patients (superior efficacy group, 3 cases) and the inferior efficacy patients (inferior efficacy group, 3 cases) were selected. Using human miRNA microarray technology, the differences in plasma miRNA expression before and after treatment were analyzed in the patients of two groups. Besides, 10 cases of superior efficacy and 10 cases of inferior one were selected respectively among the patients of moderate-to-severe allergic rhinitis treated with same acupuncture regimen; and the real-time PCR was used to validate miRNAs of differential expression determined by microarray technology. The bioinformatics analysis was performed for miRNAs of significant differences in expression so as to predict the potential functional target genes, and then, the predicted target genes were annotated in reference with the databases of gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG). RESULTS: Before treatment, there were 51 miRNAs of differential expression between two groups, of which, the expression levels of 26 miRNAs were up-regulated and those of 25 miRNAs were down-regulated. Compared with before treatment, 33 miRNAs presented differential expression in the superior efficacy group after treatment. The results of real-time PCR showed that the expression levels of hsa-miR-126-3p, hsa-miR-15a-5p, hsa-miR-494-3p and hsa-miR-574-5p were consistent with the results of microarray analysis in tendency. GO/KEGG analysis indicated that miRNAs with significant differences of expression between two groups were involved in regulating various biological processes, molecular functions and signaling pathways. CONCLUSION: Plasma miRNA-mediated biological processes may be associated with the efficacy response of acupuncture in treatment of moderate-to-severe allergic rhinitis. Plasma miRNAs of differential expression may be the potential non-invasive biomarkers to predict the effectiveness of acupuncture on moderate-to-severe allergic rhinitis.


Assuntos
Terapia por Acupuntura , MicroRNAs , Rinite Alérgica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Rinite Alérgica/genética , Rinite Alérgica/terapia , Transdução de Sinais
20.
J Med Chem ; 65(15): 10285-10299, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35878013

RESUMO

Under the known pharmacological activation mechanisms, activators allosterically or directly open potassium channel gates. However, herein, molecular dynamics simulations on TREK-1, a member of the channel class gated at the filter, suggested that negatively charged activators act with a gate-independent mechanism where compounds increase currents by promoting ions passing through the central cavity. Then, based on studies of KCNQ2, we uncovered that this noncanonical activation mechanism is shared by the other channel class gated at the helix-bundle crossing. Rational drug design found a novel KCNQ2 agonist, CLE030, which stably binds to the central cavity. Functional analysis, molecular dynamics simulations, and calculations of the potential of mean force revealed that the carbonyl oxygen of CLE030 influences permeant ions in the central cavity to contribute to its activation effects. Together, this study discovered a ligand-to-ion activation mechanism for channels that bypasses their gates and thus is conserved across subfamilies with different gates.


Assuntos
Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Íons/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...