Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10169, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702375

RESUMO

Bovine viral diarrhea virus (BVDV) is considered to be the most common agent of severe diarrhea in cattle worldwide, causing fever, diarrhea, ulcers, and abortion. Bovine herpesvirus 1 (BoHV-1) is also a major bovine respiratory disease agent that spreads worldwide and causes extensive damage to the livestock industry. Recombinase polymerase amplification (RPA) is a novel nucleic acid amplification method with the advantages of high efficiency, rapidity and sensitivity, which has been widely used in the diagnosis of infectious diseases. A dual RPA assay was developed for the simultaneous detection of BVDV and BoHV-1. The assay was completed at a constant temperature of 37 °C for 30 min. It was highly sensitive and had no cross-reactivity with other common bovine viruses. The detection rate of BVDV RPA in clinical samples (36.67%) was higher than that of PCR (33.33%), the detection rate of BoHV-1 RPA and PCR were equal. Therefore, the established dual RPA assay for BVDV and BoHV-1 could be a potential candidate for use as an immediate diagnostic.


Assuntos
Vírus da Diarreia Viral Bovina , Herpesvirus Bovino 1 , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Animais , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Sensibilidade e Especificidade , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/diagnóstico , DNA Viral/genética
2.
Animals (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254440

RESUMO

The objective of this study was to develop an indirect ELISA utilizing a polyclonal antibody against bovine rotavirus (BRV) VP6 protein. To achieve this, pcDNA3.1-VP6, a recombinant eukaryotic expression plasmid, was constructed based on the sequence of the conserved BRV gene VP6 and was transfected into CHO-K1 cells using the transient transfection method. The VP6 protein was purified as the coating antigen using nickel ion affinity chromatography, and an indirect ELISA was subsequently established. The study found that the optimal concentration of coating for the VP6 protein was 1 µg/mL. The optimal blocking solution was 3% skim milk, and the blocking time was 120 min. The secondary antibody was diluted to 1:4000, and the incubation time for the secondary antibody was 30 min. A positive result was indicated when the serum OD450 was greater than or equal to 0.357. The coefficients of variation were less than 10% both within and between batches, indicating the good reproducibility of the method. The study found that the test result was positive when the serum dilution was 217, indicating the high sensitivity of the method. A total of 24 positive sera and 40 negative sera were tested using the well-established ELISA. The study also established an indirect ELISA assay with good specificity and sensitivity for the detection of antibodies to bovine rotavirus. Overall, the results suggest that the indirect ELISA method developed in this study is an effective test for detecting such antibodies.

3.
Front Vet Sci ; 10: 1126785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323845

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV), which can cause severe clinical disease and even death in humans. In recent years, the disease has spread to a wider area, posing a major public health threat to China as well as the Middle East, Europe and Africa, and there is no safe and effective vaccine to prevent the disease. Recently, it has been shown that using the Zera fusion to target proteins can enhance immunogenicity and improve the potential for developing viral vaccines. Based on this finding, in this study, two vaccine candidates, Zera-Gn and Zera-Np, were prepared using an insect baculovirus system expressing CCHFV glycoprotein (Gn) and nucleocapsid protein (Np) fused with Zera tags, and evaluated for immunogenicity in BALB/c mice. The obtainedresults showed that both Zera-Gn and Zera-Np recombinant nanoparticles were successfully expressed, and Zera-Gn had good induction of humoral and cellular immunity in mice, and its immunogenicity was significantly higher than that of Zera-Np. The results indicated that Zera-Gn self-assembled nanoparticles prepared by fusing Zera tags with CCHFV spike-in protein Gn have the potential to be a candidate vaccine for CCHF, and this study provides a reference for the development of Zera self-assembled nanoparticle vaccine for CCHF.

4.
Front Microbiol ; 14: 1107874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007525

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), which has a fatality rate of 20-30%, is widely prevalent in several regions in Asia, Europe, and Africa and has spread to a wider range of areas in recent years. At present, there is a lack of safe and effective vaccines for the prevention of CCHF. In this study, we prepared three vaccine candidates, rvAc-Gn, rvAc-Np, and rvAc-Gn-Np, that encoded the CCHF virus (CCHFV) glycoprotein Gn and the nucleocapsid protein (Np) on the surface of baculovirus using an insect baculovirus vector expression system (BVES) and evaluated their immunogenicity in BALB/c mice. The experimental results showed that both CCHFV Gn and Np were expressed by the respective recombinant baculoviruses and anchored to the viral envelope. BALB/c mice were immunized, and all three recombinant baculoviruses showed significant humoral immunity. At the cellular level, the level of immunity in the rvAc-Gn group was significantly higher than that in the rvAc-Np and rvAc-Gn-Np groups, and the rvAc-Gn-Np coexpression group exhibited the lowest level of cellular immunity. In conclusion, the strategy of coexpressing Gn and Np in the baculovirus surface display system did not result in improvements in immunogenicity, whereas the recombinant baculovirus displaying Gn alone could induce significant humoral and cellular immunity in mice, indicating that rvAc-Gn has potential as a CCHF vaccine candidate. This study thus provides new ideas for the development of a CCHF baculovirus vaccine.

5.
Microbiol Spectr ; 10(5): e0111522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214702

RESUMO

Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.


Assuntos
Phlebovirus , Vírus de RNA , Doenças Transmitidas por Carrapatos , Carrapatos , Vírus , Humanos , Animais , Filogenia , Viroma/genética , Phlebovirus/genética , Vírus de RNA/genética , China , Vírus/genética , Doenças Transmitidas por Carrapatos/epidemiologia
6.
Anal Chem ; 94(11): 4686-4694, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271257

RESUMO

Insertions/deletions (indels) variations have been recognized as a promising marker for the development of various diseases. However, methods used for the genotyping of indels in studies were tedious, complicated, and required sophisticated or expensive instruments, as well as complex data analysis, which makes it difficult to meet the demand of point of care testing. Herein, we presented a fast and accurate biosensor (T-ARMS-PCR-LFA) by the combination of tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) and GoldMag lateral flow assay (LFA) for visual genotyping of ACE I/D polymorphism. ACE I/D can be distinguished by employing four primers in one PCR reaction, and genotyping results were presented by the visual inspection of colors on the nitrocellulose membrane of LFA strips within 5 min. And 50 of the human genomic DNA samples were used for the detection of ACE I/D to further validate the accuracy of the T-ARMS-PCR-LFA system. As a demonstration, we showed that ACE I/D could be genotyped using a low amount of DNA sample (25 ng) with an accuracy of 100%, without complicated operation steps and data analysis, which is better than that of the conventional method (agarose gel electrophoresis analysis after common PCR). In conclusion, the biosensor is highly applicable for genotyping specific large indel variants in clinical practices, which enables rapid clinical decision-making, improves the management of disease diagnosis, and facilitates personalized medicine.


Assuntos
Técnicas de Genotipagem , Peptidil Dipeptidase A , Polimorfismo de Nucleotídeo Único , DNA/genética , Genótipo , Humanos , Mutação , Peptidil Dipeptidase A/genética , Reação em Cadeia da Polimerase/métodos
7.
Analyst ; 146(7): 2248-2254, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33599220

RESUMO

Tumorigenesis driven by abnormal DNA methylation has highlighted the need to develop a portable, rapid and sensitive strategy for accurate methylation detection with a specific cancer-prognostic gene, which caters to the popularization of precision medicine. In this study, a site-specific biosensor for both visual and magnetic DNA methylation determination has been established based on lateral flow assay. By introducing digoxin- and biotin-labeled primers into PCR, the amplicons can be recognized and captured by gold magnetic nanoparticles (GMNPs) in this biosensor. Working as a signal probe, the optical property of GMNPs allows the amplicons to be interpreted with naked eyes avoiding any complex equipment and cumbersome operation after PCR. Moreover, by virtue of the magnetic property of GMNP, the signal can be explained and recorded by a magnetometer in clinical practice. The introduction of tailor-made primer sets makes it possible to accurately distinguish 0.1% methylated variants in the presence of numerous unmethylated variants as strong interferential background and vice versa at target cytosine-guanine dinucleotide. A distinct signal can be observed with as low as 0.01 pg variants for both visual and magnetic analyses. As a significant tumor suppressor gene, the promoter methylation status of miR-34a is accurately determined with not only cell lines but also with clinical samples, which demonstrates the great potential of this biosensor for cancer diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais , Metilação de DNA , Ouro , Fenômenos Magnéticos , Reação em Cadeia da Polimerase
8.
Anal Biochem ; 616: 114087, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352189

RESUMO

Deletion mutation has been proved as the important factor for occurrence and development of disease, especially those with cancer. With the popularity of precision medicine, the individual cancer therapeutic strategy has highlighted the requirement to develop a straightforward and competent strategy for deletion mutation determination. Hence, the present study is dedicated to develop a one-step assay to identify deletion mutation with sequence specificity for clinical practice. Taking advantage of loop-mediated isothermal amplification, an ultrasensitive and rapid deletion mutation determination method is established, which allow as low as 30 copies or 0.1% target variants under strong interferential background can be accurately distinguished in 30 min dispensing with professional operation and complex data interpretation. As a demonstration, the epidermal growth factor receptor p.E746-A750del, a crucial factor for the susceptibility of tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by this method with both cell lines and real clinical samples. By tailor-made primer set, this method can be extended for other deletion mutants, making it a molecular diagnostic tool and could be readily adapted for cancer diagnosis, therapy and prognosis in point of care diagnostic test scenario.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA/métodos , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Deleção de Sequência , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Linhagem Celular Tumoral , Primers do DNA/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Sensibilidade e Especificidade
9.
Nanoscale ; 12(18): 10098-10105, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32350488

RESUMO

Rapid and simple detection of single nucleotide polymorphism (SNP) is vital for individualized diagnosis and eventual treatment in the current clinical setting. In this study, we developed a tetra-primer ARMS-PCR combined lateral flow assay (T-ARMS-PCR-LFA) method for simultaneous visual detection of two alleles. By using four primers labeled with digoxin, biotin and Cy5 separately in one PCR reaction, the amplified allele-specific products could be captured by streptavidin and the anti-Cy5 antibody on two separated test lines of a LFA strip, which allows the presentation of both alleles within the single LFA strip. Both DNA and whole blood can be used as templates in this genotyping method in which the whole detection process is completed within 75 minutes. The performance assay of T-ARMS-PCR-LFA demonstrates the accuracy, specificity and sensitivity of this method. One hundred human whole blood samples were used for MTHFR C677T genotyping in T-ARMS-PCR-LFA. The concordance rate of the results detected was up to 100% when compared with that of the sequencing results. Collectively, this newly developed method is highly applicable for SNP screening in clinical practices.


Assuntos
DNA/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Reação em Cadeia da Polimerase/métodos , Alelos , Anticorpos/química , Anticorpos/imunologia , DNA/sangue , Primers do DNA/química , Primers do DNA/metabolismo , Digoxina/química , Digoxina/imunologia , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
10.
Opt Express ; 26(2): A209-A218, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401930

RESUMO

We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

11.
Materials (Basel) ; 10(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28773241

RESUMO

In this work, we theoretically analyze the performance characteristics of a near-field thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb-based photovoltaic cell at separations less than the thermal wavelength. The emitter consists of a tungsten nanoparticle-embedded thin film of SiO 2 deposited on bulk tungsten. Numerical results presented here are obtained using formulae derived from dyadic Green's function formalism and Maxwell-Garnett-Mie theory. We show that via the inclusion of tungsten nanoparticles, the thin layer of SiO 2 acts like an effective medium that enhances selective radiative heat transfer for the photons above the band gap of GaSb. We analyze thermophotovoltaic (TPV) performance for various volume fractions of tungsten nanoparticles and thicknesses of SiO 2 .

12.
Sci Rep ; 6: 26533, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246657

RESUMO

Single-nucleotide polymorphisms (SNPs) represent the most widespread type of genetic variation (approximately 90%) in the human genome, and the demand to overcome such variation has received more attention now than ever before. The capacity to rapidly assess SNPs that correlate with disease predisposition, drug efficacy and drug toxicity is a key step for the development of personalized medicine. In this work, a rapid one-step SNP detection method, real-time loop-mediated isothermal amplification (RT-LAMP), was first applied for CYP2C19 polymorphisms testing. The optimized method was established with specifically designed primers for target amplification by real-time detection in approximately 30 min under isothermal conditions. RT-LAMP amplified few copies of template to produce significant amounts of product and quantitatively detected human DNA with compatible specificity and sensitivity. The success in the establishment of this RT-LAMP protocol for CYP2C19 polymorphism testing is significant for the extension of this technique for the detection of other SNPs, which will further facilitate the development of personalized medicine.


Assuntos
Citocromo P-450 CYP2C19/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Polimorfismo de Nucleotídeo Único , Primers do DNA/genética , Humanos , Medicina de Precisão , Temperatura
13.
Nanoscale ; 8(6): 3579-87, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26804455

RESUMO

Current techniques for single nucleotide polymorphism (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticle (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amounts from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1721 individuals for the C677T genotypes. The concordance rate of the genotyping results detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven to be rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes.


Assuntos
Técnicas de Genotipagem/métodos , Ouro/química , Nanopartículas Metálicas/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA