Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38888146

RESUMO

To explore key factors involved in the uptake, translocation and accumulation of organophosphate esters (OPEs), computer simulation analysis and hydroponic experiments were executed. Lipid transporters with stocky-like active (SAC) cavities usually showed stronger binding affinities with the OPEs, especially when the SAC cavities belong to the Fish Trap model according to molecular docking. In our hydroponic trial, the binding affinity and gene expression of the lipid transporters and log Kow of the OPEs could be charged to the uptake, translocation and accumulation of the OPEs; however, these three factors played various important roles in roots and shoots. In detail, the effect of gene expression and binding affinity were stronger than log Kow in roots uptake and accumulation, but the result was the opposite in the shoots translocation. Transporters OsTIL and OsLTPL1 among all investigated transporters could play key roles in transporter-mediated OPE uptake, translocation and accumulation in the roots and shoots. OsMLP could be involved in the bidirected vertical translocation of the OPEs. OsLTP2 and OsLTP4 mainly acted as transporters of the OPEs in roots.

2.
J Integr Plant Biol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860597

RESUMO

The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.

3.
J Clin Neurosci ; 125: 159-166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815302

RESUMO

BACKGROUND: Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs) are linked with various complications, notably ischemic stroke. The study aims to identify risk factors for ischemic stroke in Ph-negative MPNs patients. METHODS: Patients were categorized into two groups based on whether they had experienced ischemic stroke. Subsequently, an analysis of demographics, biochemical makers, and genetic mutations (JAK2V617F and CALR mutations), was conducted to identify potential associations with an elevated risk of ischemic stroke in individuals with Ph-negative MPNs. RESULTS: A total of 185 patients diagnosed with Ph-negative MPNs participated in the study, including 82 with essential thrombocythemia (ET), 78 with polycythemia vera (PV), and 25 with primary myelofibrosis (PMF). Among these, 57 patients (30.8 %) had a history of ischemic stroke. Independent risk factors associated with ischemic stroke in Ph-negative MPNs patients included hypertension (OR = 5.076) and smoking (OR = 5.426). Among ET patients, smoking (OR = 4.114) and an elevated percentage of neutrophils (OR = 1.080) were both positively correlated with ischemic stroke incidence. For PV patients, hypertension (OR = 4.647), smoking (OR = 6.065), and an increased percentage of lymphocytes (OR = 1.039) were independently associated with ischemic stroke. Regardless of the presence of the JAK2V617F mutation, hypertension was the sole positively and independently associated risk factor for ischemic stroke. The odds ratios for patients with the JAK2V617F mutation was 3.103, while for those without the mutation, it was 11.25. CONCLUSIONS: Hypertension was a more substantial factor associated with an increased incidence of ischemic stroke in Ph-negative MPNs patients.


Assuntos
AVC Isquêmico , Janus Quinase 2 , Transtornos Mieloproliferativos , Cromossomo Filadélfia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , AVC Isquêmico/epidemiologia , AVC Isquêmico/genética , Idoso , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/epidemiologia , Adulto , Hipertensão/complicações , Hipertensão/epidemiologia , Mutação , Calreticulina/genética , Idoso de 80 Anos ou mais , Fumar/efeitos adversos , Fumar/epidemiologia
4.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591524

RESUMO

The physical and mechanical properties of recycled coarse aggregate (RCA) are worse than those of natural coarse aggregate (NCA), and the overall performance of recycled concrete prepared from RCA is worse than that of natural aggregate concrete. Treatment of RCA by CO2-accelerated carbonation effectively improves the macroscopic properties of RCA. The degree of influence of raw material factors, i.e., the original concrete strength (OCS) and initial moisture content (IMC) of RCA, on the carbonation of RCAs is very complex. Herein, an accelerated carbonation experiment for RCA with different material factors as variables was carried out to explore the influence of the abovementioned factors on the physical properties of carbonated recycled coarse aggregate (CRCA). By analyzing the microstructure of the RCA with the best modification effect before and after carbonation, the carbonation modification mechanism of the RCA was revealed. The physical performance indexes, including the apparent density, water absorption and carbonation rate, of the dried RCA with an OCS of C40 and C50 were significantly improved. The research results can provide basic data and theoretical support for promoting the popularization and application of RCA and recycled concrete in practical engineering.

5.
Exp Eye Res ; 243: 109907, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649019

RESUMO

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.


Assuntos
Ritmo Circadiano , Camundongos Endogâmicos C57BL , Retina , Privação do Sono , Transcriptoma , Animais , Privação do Sono/fisiopatologia , Privação do Sono/metabolismo , Privação do Sono/genética , Camundongos , Ritmo Circadiano/fisiologia , Masculino , Retina/metabolismo , Retina/fisiopatologia , Modelos Animais de Doenças , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Eletrorretinografia , Regulação da Expressão Gênica , Doença Crônica
6.
Environ Int ; 185: 108549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447453

RESUMO

Universal access to clean fuels in household use is one explicit indicator of sustainable development while currently still billions of people rely on solid fuels for daily cooking. Despite of the recognized clean transition trend in general, disparities in household energy mix in different activities (e.g. cooking and heating) and historical trends remain to be elucidated. In this study, we revealed the historical changing trend of the disparity in household cooking and heating activities and associated carbon emissions in rural China. The study found that the poor had higher total direct energy consumption but used less modern energy, especially in cooking activities, in which the poor consumed 60 % more energy than the rich. The disparity in modern household energy use decreased over time, but conversely the disparity in total residential energy consumption increased due to the different energy elasticities as income increases. Though per-capita household CO2 and Black Carbon (BC) emissions were decreasing under switching to modern energies, the disparity in household CO2 and BC deepened over time, and the low-income groups emitted âˆ¼ 10 kg CO2 more compared to the high-income population. Relying solely on spontaneous clean cooking transition had limited impacts in reducing disparities in household energy and carbon emissions, whereas improving access to modern energy had substantial potential to reduce energy consumption and carbon emissions and its disparity. Differentiated energy-related policies to promote high-efficiency modern heating energies affordable for the low-income population should be developed to reduce the disparity, and consequently benefit human health and climate change equally.


Assuntos
Poluição do Ar em Ambientes Fechados , Carbono , Humanos , Dióxido de Carbono , Características da Família , Fatores Socioeconômicos , China , População Rural , Culinária , Poluição do Ar em Ambientes Fechados/análise
7.
Adv Mater ; : e2311025, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427593

RESUMO

Perovskite solar cells (PSCs) have attracted widespread research and commercialization attention because of their high power conversion efficiency (PCE) and low fabrication cost. The long-term stability of PSCs should satisfy industrial requirements for photovoltaic devices. Inverted PSCs with a p-i-n architecture exhibit considerable advantages because of their excellent stability and competitive efficiency. The continuously broken-through PCE of inverted PSCs shows huge application potential. This review summarizes the developments and outlines the characteristics of inverted PSCs including charge transport layers (CTLs), perovskite compositions, and interfacial regulation strategies. The latest effective CTLs, interfacial modification, and stability promotion strategies especially under light, thermal, and bias conditions are emphatically analyzed. Furthermore, the applications of the inverted structure in high-efficiency and stable tandem, flexible photovoltaic devices, and modules and their main obstacles are systematically introduced. Finally, the remaining challenges faced by inverted devices are discussed, and several directions for advancing inverted PSCs are proposed according to their development status and industrialization requirements.

8.
J Genet Genomics ; 51(6): 642-651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423503

RESUMO

Identical-by-descent (IBD) is a fundamental genomic characteristic in population genetics and has been widely used for population history reconstruction. However, limited by the nature of IBD, which could only capture the relationship between two individuals/haplotypes, existing IBD-based history inference is constrained to two populations. In this study, we propose a framework by leveraging IBD sharing in multi-population and develop a method, MatrixIBD, to reconstruct recent multi-population migration history. Specifically, we employ the structured coalescent theory to precisely model the genealogical process and then estimate the IBD sharing across multiple populations. Within our model, we establish a theoretical connection between migration history and IBD sharing. Our method is rigorously evaluated through simulations, revealing its remarkable accuracy and robustness. Furthermore, we apply MatrixIBD to Central and South Asia in the Human Genome Diversity Project and successfully reconstruct the recent migration history of three closely related populations in South Asia. By taking into account the IBD sharing across multiple populations simultaneously, MatrixIBD enables us to attain clearer and more comprehensive insights into the history of regions characterized by complex migration dynamics, providing a holistic perspective on intricate patterns embedded within the recent population migration history.


Assuntos
Genética Populacional , Migração Humana , Humanos , Migração Humana/história , Modelos Genéticos , Genoma Humano/genética , Haplótipos/genética
9.
Materials (Basel) ; 17(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255592

RESUMO

Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(ß-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder Company. The effects of different modifiers on improving the flowability of ultrafine silicon carbide slurry were investigated by means of viscosity tests, sedimentation experiments, and SEM observations. Their modification mechanisms were investigated by means of zeta potential tests, XPS tests, and so on. In this paper, the initial modification of SiC was carried out with KH792, followed by the secondary modification with anionic and cationic modifiers (tetramethylammonium hydroxide and sodium humate), and the optimal modification conditions were investigated by means of a viscosity test, which showed that the lowest viscosity of the modified SiC reached 0.076 Pa·s and that the absolute maximum value of the zeta potential increased from 47.5 at the time of no modification to 63.7 (maximum values) at the time of modification. This means it has an improved surface charge, which improves dispersion. The adsorption results of the modifier on the silicon carbide surface were also demonstrated by the XPS test results.

10.
BMC Infect Dis ; 24(1): 116, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254025

RESUMO

OBJECTIVE: This study aimed to explore the characteristics of carbapenem-resistant Enterobacterales (CRE) patients in the intensive care unit (ICU) in different regions of Henan Province to provide evidence for the targeted prevention and treatment of CRE. METHODS: This was a cross-sectional study. CRE screening was conducted in the ICUs of 78 hospitals in Henan Province, China, on March 10, 2021. The patients were divided into provincial capital hospitals and nonprovincial capital hospitals for comparative analysis. RESULTS: This study involved 1009 patients in total, of whom 241 were CRE-positive patients, 92 were in the provincial capital hospital and 149 were in the nonprovincial capital hospital. Provincial capital hospitals had a higher rate of CRE positivity, and there was a significant difference in the rate of CRE positivity between the two groups. The body temperature; immunosuppressed state; transfer from the ICU to other hospitals; and use of enemas, arterial catheters, carbapenems, or tigecycline at the provincial capital hospital were greater than those at the nonprovincial capital hospital (P < 0.05). However, there was no significant difference in the distribution of carbapenemase strains or enzymes between the two groups. CONCLUSIONS: The detection rate of CRE was significantly greater in provincial capital hospitals than in nonprovincial capital hospitals. The source of the patients, invasive procedures, and use of advanced antibiotics may account for the differences. Carbapenem-resistant Klebsiella pneumoniae (CR-KPN) was the most prevalent strain. Klebsiella pneumoniae carbapenemase (KPC) was the predominant carbapenemase enzyme. The distributions of carbapenemase strains and enzymes were similar in different regions.


Assuntos
Antibacterianos , Temperatura Corporal , Humanos , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cânula , Carbapenêmicos/farmacologia , Klebsiella pneumoniae
11.
Technol Health Care ; 32(2): 573-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37393445

RESUMO

BACKGROUND: Cells adherence provides specific information about physiology and pathology, the adhesion measurement between living cells and nanostructures can be measured by atomic force microscopy, but this detection technique is difficult to operate and costly. The adhesion height and effective contact area between cells and substrates are also the key factors affecting measurement value of the overall impedance. These factors change with structural parameters of the substrates, so the adhesion measurement between living cells and substrate can be indirectly reflected by the impedance value. OBJECTIVE: To establish a mapping relationship between the impedance measurement and the adhesion measurement of living cells. The possibility of dynamic measurement of adhesion is realized by this method, and the experimental process is simplified. METHODS: Laser interference technology was used to prepare nanoarray structures with different periods on the surface of silicon wafers for cells culture. Under the same experimental conditions, the impedance of living cells on the substrates of different cycle sizes were measured. The adhesion between cells and different substrates were analyzed by measuring impedance after the interaction between cells and substrate. RESULTS: The adhesion of living cells on the substrates of different sizes be analyzed, and the mapping relationship between the impedance and the adhesion measurement was established. The results showed that, the larger the impedance value between cells and substrate, the larger the effective contact area and the smaller the gap between them. CONCLUSION: The difference of adhesion height and effective adhesion area between living cells and substrates were obtained. This paper, a new method to measure the adhesion properties of living cells is presented, which provides theoretical basis for the related research.


Assuntos
Impedância Elétrica , Humanos , Células Cultivadas
12.
Biotechnol Bioeng ; 121(2): 551-565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921467

RESUMO

Clostridium butyricum is a probiotic that forms anaerobic spores and plays a crucial role in regulating gut microbiota. However, the total viable cell count and spore yield of C. butyricum in industrial production are comparatively low. To this end, we investigated the metabolic characteristics of the strain and proposed three distinct pH regulation strategies for enhancing spore production. In addition, precise measurement of fermentation parameters such as substrate concentration, total viable cell count, and spore concentration is crucial for successful industrial probiotics production. Nevertheless, online measurement of these intricate parameters in the fermentation of C. butyricum poses a considerable challenge owing to the complex, nonlinear, multivariate, and strongly coupled characteristics of the production process. Therefore, we analyzed the capacitance and conductivity acquired from a viable cell sensor as the core parameters for the fermentation process. Subsequently, a robust soft sensor was developed using a seven-input back-propagation neural network model with input variables of fermentation time, capacitance, conductivity, pH, initial total sugar concentration, ammonium ion concentration, and calcium ion concentration. The model enables the online monitoring of total viable biomass count, substrate concentrations, and spore yield, and can be extended to similar fermentation processes with pH changes as a characteristic feature.


Assuntos
Clostridium butyricum , Clostridium butyricum/metabolismo , Esporos Bacterianos , Fermentação , Redes Neurais de Computação , Concentração de Íons de Hidrogênio
13.
Langmuir ; 39(45): 16151-16162, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910769

RESUMO

This study presented a novel modification method for fine SiC powder by using sodium lignosulfonate as a dispersant. The adsorption behavior of sodium lignosulfonate on the SiC/water interface and its effect on the performance of a fine SiC slurry were systematically investigated. The adsorption results showed that sodium lignosulfonate formed monolayer adsorption on the surface of fine SiC and that the saturated adsorption capacity was 1.3263 mg/g. The adsorption reached equilibrium within 3 h and was mainly controlled by active sites on the SiC surface. The dispersion, stability, and zeta potential of modified SiC powder were improved after sodium lignosulfonate adsorption. The zeta potential of modified SiC reached a minimum value of -44.8 mV at pH 12. Modified SiC suspensions had great stability in a wider pH range of 6-12. Modified SiC slurry with 54 vol % solid loading had a low viscosity of 173 mPa·s at pH 10. Subsequently, coarse SiC powder was added for slip casting. A mixed slurry with high solid loading (69 vol %) and low viscosity (583 mPa·s) was prepared using modified SiC and coarse SiC powders at a mass ratio of 2:3. Finally, recrystallized SiC green body with high density (2.6492 g/cm3) was obtained.

14.
Heliyon ; 9(10): e20609, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916095

RESUMO

Auroras are bright occurrences when high-energy particles from the magnetosphere and solar wind enter Earth's atmosphere through the magnetic field and collide with atoms in the upper atmosphere. The morphological and temporal characteristics of auroras are essential for studying large-scale magnetospheric processes. While auroras are visible to the naked eye from the ground, scientists use deep learning algorithms to analyze all-sky images to understand this phenomenon better. However, the current algorithms face challenges due to inefficient utilization of global features and neglect the excellent fusion of local and global feature representations extracted from aurora images. Hence, this paper introduces a Hash-Transformer model based on Vision Transformer for aurora retrieval from all-sky images. Experimental results based on real-world data demonstrate that the proposed method effectively improves aurora image retrieval performance. It provides a new avenue to study aurora phenomena and facilitates the development of related fields.

15.
Nat Commun ; 14(1): 6262, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805547

RESUMO

Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.


Assuntos
Glycine max , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Glycine max/genética , Glycine max/metabolismo , Giberelinas , Melhoramento Vegetal , Ciclossomo-Complexo Promotor de Anáfase , Plantas/metabolismo , Folhas de Planta/metabolismo
16.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895963

RESUMO

Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering.

17.
Plant Cell ; 36(1): 112-135, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37770034

RESUMO

Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.


Assuntos
Glycine max , Tolerância ao Sal , Glycine max/genética , Tolerância ao Sal/genética , Peróxido de Hidrogênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cisteína/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569954

RESUMO

Moisture is the basis of CO2 transport and carbonation reactions in the internal pores of cement-based materials. Too much or too little moisture influences the effect of the carbonation modification of CO2 on recycled concrete aggregate (RCA). During the carbonation reaction process of RCA, moisture is mainly derived from the environmental relative humidity (RH) and the initial water content (IWC) of the RCA itself. According to the available literature, most of the studies on the effect of moisture on the carbonation modification of RCA considered either RH or IWC. Further investigations of the synergistic effects of RH and IWC on the improvement in the properties of carbonated recycled concrete aggregate (CRCA) are needed. In this study, accelerated carbonation experiments were conducted for RCA samples with different IWCs under different environmental RHs. The results showed that the best moisture conditions for CRCA property improvement were confirmed as RH = 70% for the dry-state IWC and RH = 50% for the saturated-state IWC. When the RCAs were carbonized under the conditions of high RH with low IWC and low RH with high IWC, CO2 had good abilities to permeate and diffuse, with the improvement in CRCA properties achieving excellent levels of performance.

19.
Chemosphere ; 338: 139579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474032

RESUMO

The escalating generation of hazardous waste (HW) has become a pressing concern worldwide, straining waste management systems and posing significant health hazards. Addressing this challenge necessitates an accurate understanding of HW generation, which can be achieved through the application of advanced models. The Transformer model, known for its ability to capture complex nonlinear processes, proves invaluable in extracting essential features and making precise HW generation predictions. To enhance comprehension of the key factors influencing HW generation, visualization techniques such as SHapley Additive exPlanations (SHAP) provide insightful explanations. In this study, a novel approach combining classical deep learning algorithms with the Transformer model is proposed, yielding impressive results with an R2 value of 0.953 and an RMSE of 7.284 for HW prediction. Notably, among the five key fields considered-demographics, socio-economics, industrial production, environmental governance, and medical health-industrial production emerges as the primary contributor, accounting for over 50% of HW generation. Moreover, a high rate of industrial development is anticipated to further accelerate this process.


Assuntos
Conservação dos Recursos Naturais , Gerenciamento de Resíduos , Resíduos Perigosos/análise , China , Política Ambiental , Gerenciamento de Resíduos/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-37453026

RESUMO

A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...