Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7800-7808, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870391

RESUMO

Metal nanoclusters feature a hierarchical structure, facilitating their ability to mimic enzyme-catalyzed reactions. However, the lack of true catalytic centers, compounded by tightly bound surface ligands hindering electron transfers to substrates, underscores the need for universal rational design methodologies to emulate the structure and mechanisms of natural enzymes. Motivated by the electron transfer in active centers with specific chemical structures, by integrating the peroxidase cofactor Fe-TCPP onto the surface of glutathione-stabilized gold nanoclusters (AuSG), we engineered AuSG-Fe-TCPP clusterzymes with a remarkable 39.6-fold enhancement in peroxidase-like activity compared to AuSG. Fe-TCPP not only mimics the active center structure, enhancing affinity to H2O2, but also facilitates the electron transfer process, enabling efficient H2O2 activation. By exemplifying the establishment of a detecting platform for trace H2O2 produced by ultrasonic cleaners, we substantiate that the bioinspired surface-ligand-engineered electron transfer can improve sensing performance with a wider linear range and lower detection limit.


Assuntos
Ouro , Peróxido de Hidrogênio , Nanopartículas Metálicas , Ouro/química , Peróxido de Hidrogênio/química , Transporte de Elétrons , Ligantes , Catálise , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Glutationa/química
2.
Adv Mater ; : e2406594, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940263

RESUMO

Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high-energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40%-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12%-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.

3.
Neuroimmunomodulation ; 31(1): 126-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843787

RESUMO

INTRODUCTION: Dimethyl fumarate (DMF) has shown potential for protection in various animal models of neurological diseases. However, the impact of DMF on changes in peripheral immune organs and the central nervous system (CNS) immune cell composition after ischemic stroke remains unclear. METHODS: Eight-week-old C57BL/6J mice with photothrombosis ischemia and patients with acute ischemic stroke (AIS) were treated with DMF. TTC staining, flow cytometry, and immunofluorescence staining were used to evaluate the infarct volume and changes in immune cells in the periphery and the CNS. RESULTS: DMF reduced the infarct volume on day 1 after PT. DMF reduced the percentages of peripheral immune cells, such as neutrophils, dendritic cells, macrophages, and monocytes, on day 1, followed by NK cells on day 3 and B cells on day 7 after PT. In the CNS, DMF significantly reduced the percentage of monocytes in the brain on day 3 after PT. In addition, DMF increased the number of microglia in the peri-infarct area and reduced the number of neurons in the peri-infarct area in the acute and subacute phases after PT. In AIS patients, B cells decreased in patients receiving alteplase in combination with DMF. CONCLUSION: DMF can change the immune environment of the periphery and the CNS, reduce infarct volume in the acute phase, promote the recruitment of microglia and preserve neurons in the peri-infarct area after ischemic stroke.


Assuntos
Fumarato de Dimetilo , AVC Isquêmico , Camundongos Endogâmicos C57BL , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , AVC Isquêmico/imunologia , AVC Isquêmico/tratamento farmacológico , Camundongos , Masculino , Humanos , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Modelos Animais de Doenças
4.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782919

RESUMO

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Assuntos
RNA Helicases DEAD-box , Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38623809

RESUMO

SIGNIFICANCE: Acute wounds such as severe burns and chronic wounds like diabetic ulcers present a significant threat to human health. Wound dressings made from natural polymers offer inherent properties that effectively enhance wound healing outcomes and reduce healing time. RECENT ADVANCES: Numerous innovative hydrogels are being developed and translated to the clinic to successfully treat various wound types. This underscores the substantial potential of hydrogels in the future wound care market. Economically, annual sales of wound care products are projected to reach $15-22 billion by 2024. CRITICAL ISSUES: While chitosan-, cellulose-, and collagen-based hydrogel dressings are currently commercially available, scaling up and manufacturing hydrogels for commercial products remains a challenging process. Additionally, ensuring the sterility and stability of the chemical or biological components comprising the hydrogel are critical considerations. FUTURE DIRECTIONS: In light of the persistent increase in wound fatalities and the resulting economic and social impacts, as well as the importance of educating the public about dietary health and disease, there should be increased investment in new wound care dressings, particularly hydrogels derived from natural products. With numerous researchers dedicated to advancing preclinical hydrogels, the future holds promise for more innovative and more personalized hydrogel wound dressings.

6.
Acta Biomater ; 180: 183-196, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604465

RESUMO

The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Magnésio , Nanocompostos , Stents , Animais , Coelhos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Corrosão , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Incrustação Biológica/prevenção & controle , Dioxanos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Polímeros/farmacologia , Ligas/química , Ligas/farmacologia
7.
Int Immunopharmacol ; 133: 112074, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615383

RESUMO

The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.


Assuntos
Antígeno B7-H1 , Neoplasias Encefálicas , Glioma , Microglia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Microglia/metabolismo , Microglia/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral/imunologia
8.
PLoS One ; 19(4): e0301051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662690

RESUMO

To investigate the interplay among technological innovation, industrial structure, production methodologies, economic growth, and environmental consequences within the paradigm of a green economy and to put forth strategies for sustainable development, this study scrutinizes the limitations inherent in conventional deep learning networks. Firstly, this study analyzes the limitations and optimization strategies of multi-layer perceptron (MLP) networks under the background of the green economy. Secondly, the MLP network model is optimized, and the dynamic analysis of the impact of technological innovation on the digital economy is discussed. Finally, the effectiveness of the optimization model is verified by experiments. Moreover, a sustainable development strategy based on dynamic analysis is also proposed. The experimental results reveal that, in comparison to traditional Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes (NB) models, the optimized model in this study demonstrates improved performance across various metrics. With a sample size of 500, the optimized model achieves a prediction accuracy of 97.2% for forecasting future trends, representing an average increase of 14.6%. Precision reaches 95.4%, reflecting an average enhancement of 19.2%, while sensitivity attains 84.1%, with an average improvement of 11.8%. The mean absolute error is only 1.16, exhibiting a 1.4 reduction compared to traditional models and confirming the effectiveness of the optimized model in prediction. In the examination of changes in industrial structure using 2020 data to forecast the output value of traditional and green industries in 2030, it is observed that the output value of traditional industries is anticipated to decrease, with an average decline of 11.4 billion yuan. Conversely, propelled by the development of the digital economy, the output value of green industries is expected to increase, with an average growth of 23.4 billion yuan. This shift in industrial structure aligns with the principles and trends of the green economy, further promoting sustainable development. In the study of innovative production methods, the green industry has achieved an increase in output and significantly enhanced production efficiency, showing an average growth of 2.135 million tons compared to the average in 2020. Consequently, this study highlights the dynamic impact of technological innovation on the digital economy and its crucial role within the context of a green economy. It holds certain reference significance for research on the dynamic effects of the digital economy under technological innovation.


Assuntos
Desenvolvimento Econômico , Invenções , Desenvolvimento Sustentável , Desenvolvimento Sustentável/tendências , Invenções/tendências , Desenvolvimento Econômico/tendências , Redes Neurais de Computação , Máquina de Vetores de Suporte , Teorema de Bayes , Humanos
9.
J Colloid Interface Sci ; 667: 64-72, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38615624

RESUMO

Na3V2(PO4)3 (NVP) has attracted considerable attention as a promising cathode material for sodium-ion batteries (SIBs). But its insufficient electronic conductivity, limited capacities, and fragile structure hinder its extended application, particularly in scenarios involving rapid charging and prolonged cycling. A hybrid cathode material has been developed to integrate both amorphous and crystalline phases, with the objective of improving the rate performance and Na storage capacity by leveraging bi-phase coordination. Consequently, the combination of amorphous and crystalline phases enhanced the kinetics of Na-ion diffusion, resulting in a 1-2 orders of magnitude enhancement in diffusion dynamics. Furthermore, the existence of amorphous states has been demonstrated to elevate the active Na2 site content, resulting in an increased reversible capacity. This assertion is substantiated by evidence derived from solid-state nuclear magnetic resonance (ss-NMR) and electrochemical characteristics. The innovative bi-phase collaborative material provides a specific capacity of 114 mAh/g at 0.2 C, exceptional rate performance of 82 mAh/g at 10 C, and remarkable long-term cycle stability, retaining 95 mAh/g at 5 C even after 300 cycles. In conclusion, the homogeneous hybridization of amorphous and crystalline phases presents itself as a promising and effective strategy for improving Na-ion storage capacity of cathodes in SIBs.

10.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477567

RESUMO

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Assuntos
Celulose , Modelos Animais de Doenças , Hemorragia , Animais , Coelhos , Ratos , Celulose/química , Citrus/química , Hemostáticos/farmacologia , Masculino , Hemostasia/efeitos dos fármacos , Ratos Sprague-Dawley , Géis , Ferimentos e Lesões/complicações
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 273-278, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512038

RESUMO

Natural killer (NK) cells directly lysis the virus-infected cells through rapidly releasing cytotoxic mediators and cytokines. The balance between inhibitory and activated receptors on the surface of NK cells, as well as the corresponding ligands expressed on target cells are involved in the regulation of the cytotoxic function of NK cells. NKG2A is one of the highly anticipated inhibitory receptors expressed on NK cells, which can inhibit the cytotoxicity of NK cells to autologous normal tissue cells through interacting with the ligand HLA-E. The studies have shown that HLA-E is overexpressed on virus-infected cells and forms a complex with peptides derived from viral proteins. The interaction of HLA-E and NKG2A can regulate the functions of NK cells, participateing the pathogenesis process of virus infectious diseases. This review outlines the characteristics of the molecular interaction between NKG2A and HLA-E, as well as the mechanisms of NKG2A-HLA-E axis in regulating NK cell responses.


Assuntos
Doenças Transmissíveis , Antígenos HLA-E , Humanos , Células Matadoras Naturais , Citocinas
12.
J Nanobiotechnology ; 22(1): 133, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539195

RESUMO

BACKGROUND: Bone defects in the maxillofacial region restrict the integrity of dental function, posing challenges in clinical treatment. Bone tissue engineering (BTE) with stem cell implants is an effective method. Nanobiomaterials can effectively enhance the resistance of implanted stem cells to the harsh microenvironment of bone defect areas by promoting cell differentiation. Graphene oxide quantum dots (GOQDs) are zero-dimensional nanoscale derivatives of graphene oxide with excellent biological activity. In the present study, we aimed to explore the effects of GOQDs prepared by two methods (Y-GOQDs and B-GOQDs) on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), as well as the effect of gelatin methacryloyl (GelMA)-encapsulated GOQD-induced hPDLSC sheets on the repair of mandibular periodontal defects in rats. We also explored the molecular biological mechanism through which GOQD promotes bone differentiation. RESULTS: There were significant differences in oxygen-containing functional groups, particle size and morphology between Y-GOQDs and B-GOQDs. Y-GOQDs promoted the osteogenic differentiation of hPDLSCs more effectively than did B-GOQDs. In addition, GelMA hydrogel-encapsulated Y-GOQD-induced hPDLSC cell sheet fragments not only exhibited good growth and osteogenic differentiation in vitro but also promoted the repair of mandibular periodontal bone defects in vivo. Furthermore, the greater effectiveness of Y-GOQDs than B-GOQDs in promoting osteogenic differentiation is due to the regulation of hPDLSC mitochondrial dynamics, namely, the promotion of fusion and inhibition of fission. CONCLUSIONS: Overall, Y-GOQDs are more effective than B-GOQDs at promoting the osteogenic differentiation of hPDLSCs by regulating mitochondrial dynamics, which ultimately contributes to bone regeneration via the aid of the GelMA hydrogels in vivo.


Assuntos
Grafite , Osteogênese , Pontos Quânticos , Humanos , Ratos , Animais , Ligamento Periodontal , Dinâmica Mitocondrial , Células-Tronco , Diferenciação Celular , Hidrogéis/farmacologia , Células Cultivadas
13.
Opt Express ; 32(2): 2644-2657, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297788

RESUMO

Lu3Al5O12:Ce (LuAG:Ce) phosphor ceramics (PCs) with the excellent thermal stability and high saturation threshold are considered as the best green-fluorescent converters for high-power laser diodes (LDs) lighting. In this study, the effects of sintering additives and sintering processes on the transmittance and microstructure of LuAG:Ce PCs were systematically studied, and the luminescence performance of ceramics with different transmittance was compared. LuAG:Ce PCs with the transmittance of 80% (@800 nm, 1.5 mm) were obtained by using 0.1 wt.% MgO and 0.5 wt.% TEOS as sintering additives, combined with optimized vacuum pre-sintering and hot isostatic pressing. Compared to the non-HIP samples, the transmittance had increased by 11%. The microstructure of ceramics indicated that high transparency was closely related to the decrease in intergranular pores. Notably, the luminous efficiency of 253 lm/W and its saturation thresholds of > 46 W/mm2 were obtained simultaneously in green-emitting LDs devices. Moreover, under 3W laser irradiation, highly transparent ceramics had the low surface temperature of 66.4 °C, indicating the good heat dissipation performance. The observed high luminous efficiency and high saturation threshold of LuAG:Ce PCs were attributed to fewer pores and oxygen vacancies. Therefore, this work proves that highly transparent LuAG:Ce PCs are promising green-fluorescent converters for high-power LDs lighting.

14.
Bioresour Technol ; 397: 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395233

RESUMO

Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.


Assuntos
Celulase , Phaeophyceae , Alga Marinha , Celulase/metabolismo , Hidrólise , Fertilizantes , Polissacarídeo-Liases/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Oligossacarídeos/metabolismo
16.
Adv Mater ; 36(13): e2305739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800466

RESUMO

Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2 (FGT) are reported. The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non-zero exchange bias at 30 K.

17.
Foodborne Pathog Dis ; 21(2): 109-118, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38011665

RESUMO

Pork products were the most common media of Salmonella in China, breaded pork products as a very popular meat presently, whose Salmonella risk should be drawn to attention. Given that quantitative risk assessment is a more scientific method for risk evaluation, a quantitative risk assessment model of Salmonella in breaded pork products was first constructed from processing to consumption, and was used for assessing the risk and the effective interventions in this study. The data of Salmonella contamination in breaded pork products during processing were obtained from the actual detection data of samples from a representative meat processing plant. With combining the predictive microbial modeling and dose-response relationship, the risk of Salmonella in breaded pork products was charactered, and the probability of Salmonella infection per meal was found to be 5.585 × 10-9. Based on the results of sensitivity analysis, the curing and seasoning process was found to be the key control point for Salmonella contamination during the processing, and consumer behavior was the key control point affecting the probability of Salmonella infection from processing to consumption. The model was also applied for assessing the effectiveness of risk interventions, and among the nine interventions given, control of thawing temperature before cooking such as microwave thawing could reduce the risk of infection by 30.969-fold, while cooking the products thoroughly, Salmonella would not pose a pathogenic hazard to consumers. The model and the assessed results in this study may provide guidance on microbial control in producing process and safety consumption of breaded pork products.


Assuntos
Produtos da Carne , Carne Vermelha , Infecções por Salmonella , Animais , Suínos , Carne Vermelha/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Salmonella , Medição de Risco/métodos
18.
Sci Adv ; 9(50): eadi4540, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091392

RESUMO

We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3 does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is [Formula: see text] = (4.9 ± 0.9) × 106 [Formula: see text], and a lower bound for the magnitude of the spin Nernst ratio is -0.61 ± 0.11. The spin Nernst ratio for Bi2Se3 is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3 can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.

19.
Front Public Health ; 11: 1281740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026342

RESUMO

Purpose: This study aims to explore and compare Chinese university students' preferences for various physical activity motivation programs. Patients and methods: A cross-sectional study was conducted in China from February 25 to March 25, 2022. Participants anonymously completed an online questionnaire based on a DCE. A total of 1,358 university students participated in the survey. The conditional logit model (CLM), willingness to accept (WTA), and propensity score matching (PSM) were used to assess college students' preferences for different attributes and levels of physical activity incentive programs. Results: Respondents identified the number of bonus, exercise time, and academic rewards as the three most significant attributes of the athletic incentive program. The importance of each attribute varied based on individual characteristics such as gender and BMI. In CLM, college students displayed a preference for a "¥4" bonus amount (OR: 2.04, 95% CI 1.95-2.13), "20 min" of exercise time (OR: 1.85, 95% CI 1.79-1.92), and "bonus points for comprehensive test scores" as academic rewards (OR: 1.33, 95% CI 1.28-1.37). According to the WTA results, college students were willing to accept the highest cost to obtain academic rewards tied to composite test scores. Conclusion: The number of bonus, exercise time, and academic rewards emerge as the three most crucial attributes of physical activity incentive programs. Furthermore, college students with different characteristics exhibit heterogeneity in their preferences for such programs. These findings can guide the development of programs and policies aimed at motivating college students to engage in physical activities.


Assuntos
Comportamento de Escolha , Motivação , Humanos , Estudos Transversais , Universidades , Estudantes , Exercício Físico
20.
J Cogn Neurosci ; 35(12): 2049-2066, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788320

RESUMO

Healthy aging is associated with extensive changes in brain structure and physiology, with impacts on cognition and communication. The "mental exercise hypothesis" proposes that certain lifestyle factors such as singing-perhaps the most universal and accessible music-making activity-can affect cognitive functioning and reduce cognitive decline in aging, but the neuroplastic mechanisms involved remain unclear. To address this question, we examined the association between age and resting-state functional connectivity (RSFC) in 84 healthy singers and nonsingers in five networks (auditory, speech, language, default mode, and dorsal attention) and its relationship to auditory cognitive aging. Participants underwent cognitive testing and fMRI. Our results show that RSFC is not systematically lower with aging and that connectivity patterns vary between singers and nonsingers. Furthermore, our results show that RSFC of the precuneus in the default mode network was associated with auditory cognition. In these regions, lower RSFC was associated with better auditory cognitive performance for both singers and nonsingers. Our results show, for the first time, that basic brain physiology differs in singers and nonsingers and that some of these differences are associated with cognitive performance.


Assuntos
Música , Canto , Humanos , Canto/fisiologia , Envelhecimento , Cognição , Encéfalo , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...