Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Scientifica (Cairo) ; 2024: 3318047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855033

RESUMO

Finding new catalysts and pyrolysis technologies for efficiently recycling wasted plastics into fuels and structured solid materials of high selectivity is the need of time. Catalytic pyrolysis is a thermochemical process that cracks the feedstock in an inert gas environment into gaseous and liquid fuels and a residue. This study is conducted on microwave-assisted catalytic recycling of wasted plastics into nanostructured carbon and hydrogen fuel using composite magnetic ferrite catalysts. The composite ferrite catalysts, namely, NiZnFe2O4, NiMgFe2O4, and MgZnFe2O4 were produced through the coprecipitation method and characterized for onward use in the microwave-assisted valorization of wasted plastics. The ferrite nanoparticles worked as a catalyst and heat susceptor for uniformly distributed energy transfer from microwaves to the feedstock at a moderate temperature of 450°C. The type of catalyst and the working parameters significantly impacted the process efficiency, gas yield, and structural properties of the carbonaceous residue. The tested process took 2-8 minutes to pulverize feedstock into gas and carbon nanotubes (CNTs), depending on the catalyst type. The NiZnFe2O4-catalyzed process produced CNTs with good structural properties and fewer impurities compared to other catalysts. The NiMgFe2O4 catalyst performed better in terms of hydrogen evolution by showing 87.5% hydrogen (H2) composition in the evolved gases. Almost 90% of extractable hydrogen from the feedstock evolved during the first 2 minutes of the reaction.

2.
BMC Musculoskelet Disord ; 25(1): 432, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831438

RESUMO

BACKGROUND: Osteoporotic vertebral compression fractures (OVCF) in the elderly increase refracture risk post-surgery, leading to higher mortality rates. Genome-wide association studies (GWAS) have identified susceptibility genes for osteoporosis, but the phenotypic variance explained by these genes has been limited, indicating the need to explore additional causal factors. Epigenetic modifications, such as DNA methylation, may influence osteoporosis and refracture risk. However, prospective cohorts for assessing epigenetic alterations in Chinese elderly patients are lacking. Here, we propose to conduct a prospective cohort study to investigate the causal network of DNA polymorphisms, DNA methylation, and environmental factors on the development of osteoporosis and the risk of refracture. METHODS: We will collect vertebral and peripheral blood from 500 elderly OVCF patients undergoing surgery, extract DNA, and generate whole genome genotype data and DNA methylation data. Observation indicators will be collected and combined with one-year follow-up data. A healthy control group will be selected from a natural population cohort. Epigenome-wide association studies (EWAS) of osteoporosis and bone mineral density will be conducted. Differential methylation analysis will compare candidate gene methylation patterns in patients with and without refracture. Multi-omics prediction models using genetic variants and DNA methylation sites will be built to predict OVCF risk. DISCUSSION: This study will be the first large-scale population-based study of osteoporosis and bone mineral density phenotypes based on genome-wide data, multi-time point methylation data, and phenotype data. By analyzing methylation changes related to osteoporosis and bone mineral density in OVCF patients, the study will explore the feasibility of DNA methylation in evaluating postoperative osteoporosis intervention effects. The findings may identify new molecular markers for effective anti-osteoporosis treatment and inform individualized prevention and treatment strategies. TRIAL REGISTRATION: chictr.org.cn ChiCTR2200065316, 02/11/2022.


Assuntos
Metilação de DNA , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Estudos Prospectivos , Idoso , Feminino , Osteoporose/genética , Masculino , Fraturas por Osteoporose/genética , Fraturas da Coluna Vertebral/genética , Estudo de Associação Genômica Ampla , Densidade Óssea/genética , Fraturas por Compressão/genética , Pessoa de Meia-Idade , Epigênese Genética , Recidiva , Idoso de 80 Anos ou mais , China/epidemiologia
3.
Front Biosci (Landmark Ed) ; 29(6): 210, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38940037

RESUMO

Traumatic spinal cord injury (SCI) is a serious disease of the central nervous system. Aside from the limited intrinsic regenerative capacity of neurons, complex microenvironmental disturbances can also lead to further cellular damage and growth inhibition. Programmed cell death regulated by pyroptosis has an important role in the pathogenesis of SCI. While there has been a wealth of new knowledge regarding cellular pyroptosis, a detailed understanding of its role in SCI and possible therapeutic strategies is still lacking. This review summarizes current advances in the regulatory role of pyroptosis-regulated cell death and inflammasome components in the inhibitory microenvironment following SCI, as well as recent therapeutic advances.


Assuntos
Inflamassomos , Piroptose , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Inflamassomos/metabolismo , Animais , Neurônios/metabolismo
4.
Environ Pollut ; 356: 124240, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810672

RESUMO

Addressing the mounting environmental challenge of non-degradable polymeric waste, the world grapples with escalating production driven by population growth, modernization, and industrialization. Pyrolysis has emerged as a promising and strategic solution for transforming non-degradable polymeric waste into valuable fuels and other chemical products. This study detailed the high-quality oil recovery from microwave co-pyrolysis of polystyrene (PS) and polypropylene (PP) mixtures. The effects of PS/PP ratio (30:0, 10:20, 15:15, 20:10, and 30:0 g), microwave power (400, 500, 600, 700, and 800 W), and pyrolysis temperature (450, 500, 550, 600, and 650 °C) on oil yield and components were studied, and the synergistic effect, higher heating value (HHV) and thermal efficiency were also detailed. The results revealed that the highest oil yield was 93.84 wt% when PS/PP ratio, microwave power, and pyrolysis temperature were adjusted at 20:10 g, 600 W, and 550 °C, respectively. And the maximum higher heating value and thermal efficiency were 45.67 MJ/kg and 56.53%, respectively. The contents of aromatic hydrocarbons, cyclic hydrocarbons, and oxygenated hydrocarbons varied in the ranges of 1.92-58.88 area%, 10.47-41.76 area%, and 5.06-24.36 area%, respectively. The contents of the major carbon numbers were C8 and C9, and they varied in 2.51-43.66 area% and 7.31-20.09 area%, respectively. The results presented in this study showed that high-quality oil can be recovered from polystyrene and polypropylene plastics by using microwave irradiation, contributing to cleaner ways for plastics recycling.

5.
Plant J ; 118(6): 2154-2168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558071

RESUMO

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.


Assuntos
Ascomicetos , Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Gossypium/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Ascomicetos/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Explosão Respiratória , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Plantas Geneticamente Modificadas , Verticillium
6.
ACS Nano ; 18(12): 9160-9175, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478910

RESUMO

The activation of multiple Pattern Recognition Receptors (PRRs) has been demonstrated to trigger inflammatory responses and coordinate the host's adaptive immunity during pathogen infections. The use of PRR agonists as vaccine adjuvants has been reported to synergistically induce specific humoral and cellular immune responses. However, incorporating multiple PRR agonists as adjuvants increases the complexity of vaccine design and manufacturing. In this study, we discovered a polymer that can activate both the Toll-like receptor (TLR) pathway and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. The polymer was then conjugated to protein antigens, creating an antigen delivery system for subunit vaccines. Without additional adjuvants, the antigen-polymer conjugates elicited strong antigen-specific humoral and cellular immune responses. Furthermore, the antigen-polymer conjugates, containing the Receptor Binding Domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein or the Monkeypox Antigen M1R as the antigens, were found to induce potent antigen-specific antibodies, neutralizing antibodies, and cytotoxic T cells. Immunization with M1R-polymer also resulted in effective protection in a lethal challenge model. In conclusion, this vaccine delivery platform offers an effective, safe, and simple strategy for inducing antigen-specific immunity against infectious diseases.


Assuntos
Adjuvantes Imunológicos , Polímeros , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Vacinas de Subunidades Antigênicas , Anticorpos Neutralizantes , Imunidade Inata , Anticorpos Antivirais
7.
J Colloid Interface Sci ; 662: 1-10, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335734

RESUMO

The photocatalytic production of H2O2 has gained recognition as an economical and eco-friendly technology, but it suffers from limitations such as low production rates and difficulty in achieving high concentrations. This study was designed to overcome these limitations by preparing BiPO4 nanocrystals (BIP NCs) via high-temperature hydrolysis, and X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that BIP NCs with particle sizes of 8.5 ± 3 nm were synthesized. In a photocatalytic performance test, only H2O and O2 were used to produce H2O2, resulting in an accumulation of H2O2 of up to 30.44 mM·g-1, as measured with the potassium titanium oxalate method; this value was 3.13 times greater than that of bulk BiPO4 (BIP-B). The resulting nanocrystals demonstrated superior electron-hole transport and separation efficiency compared to those of BIP-B, and H2O2 was formed in a one-step two-electron process. Furthermore, a film composed of a gas diffusion layer (GDL) and BIP NCs provided continuous accumulation of H2O2; a concentration of 7.23 mM was achieved after 96 h of reaction, and the stability of the film was confirmed by comparing scanning electron microscopy (SEM) images obtained before and after the reaction. Construction of a nanocrystalline structure to enhance the activities of photocatalysts and films and achieve continuous accumulation of H2O2 will provide insights into the photocatalytic production of highly concentrated H2O2.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38285264

RESUMO

Plastic waste can exist naturally for hundreds of thousands of years and harm humans, animals, and the environment. In this study, the energy and exergy performances (absorbed energy, energy efficiency, absorbed exergy, and exergy efficiency) of LDPE (low-density polyethylene) plastic particles assisted by microwave heating based on the experimental data as affected by microwave power, feeding load, and chamber volume were evaluated and analyzed. The results showed that as the microwave power raised from 500 to 900 W, the feeding load changed from 10 to 30 g, and the chamber volume decreased from 200 to 100 ml, (a) the absorbed energy at the heating time of 60 min increased from 19.73 kJ, 5.84 kJ, and 22.71 kJ to 37.69 kJ; (b) the energy efficiency for the whole heating process increased from 1.10%, 0.32%, and 1.26% to 2.09%; (c) the absorbed exergy at the heating time of 60 min increased from 0.308, 0.091, and 0.091 to 0.724 kJ; and (d) the exergy efficiency for the whole heating process increased from 0.017, 0.005, and 0.023 to 0.040%, respectively.

9.
Environ Geochem Health ; 46(2): 50, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227205

RESUMO

Identifying the sources of heavy metals (HMs) in river sediments is crucial to effectively mitigate sediment HM pollution and control its associated ecological risks in coal-mining areas. In this study, ecological risks resulting from different pollution sources were evaluated using an integrated method combining the positive matrix factorization (PMF) and the potential ecological risk index (RI) model. A total of 59 sediment samples were collected from the Kuye River and analyzed for eight HMs (Zn, Cr, Ni, Cu, Pb, As, Cd, and Hg). The obtained results showed that the sediment HM contents were higher than the corresponding soil background values in Shaanxi Province. The average sediment Hg content was 3.42 times higher than the corresponding background value. The PMF results indicated that HMs in the sediments were mainly derived from industrial, traffic, agricultural, and coal-mining sources. The RI values ranged from 26.15 to 483.70. Hg was the major contributor (75%) to the ecological risk in the vicinity of the Yanjiata Industrial Park. According to the PMF-based RI model, coal-mining activities exhibited the strongest impact on the river ecosystem (48.79%), followed, respectively, by traffic (34.41%), industrial (12.70%), and agricultural (4.10%) activities. These results indicated that the major anthropogenic sources contributing to the HM contents in the sediments are not necessarily those posing the greatest ecological risks. The proposed integrated approach in this study was useful in evaluating the ecological risks associated with different anthropogenic sources in the Kuye River, providing valuable suggestions for reducing sediment HM pollution and effectively protecting river ecosystems.


Assuntos
Mercúrio , Metais Pesados , Ecossistema , Rios , China , Carvão Mineral
10.
JAMA Otolaryngol Head Neck Surg ; 149(12): 1101-1110, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796484

RESUMO

Importance: Cancer survivors are at a higher risk of developing hearing loss (HL) due to older age, chemotherapy, and radiotherapy. However, the prevalence of HL among US cancer survivors remains unknown. Additionally, there is a lack of uniform HL screening guidelines for this enlarging population. Objective: To estimate the prevalence of subjective HL and objective HL by audiometry test among cancer survivors and compare them with the general population as well as to assess the performance of subjective HL questions in detecting true (ie, audiometry-confirmed) HL. Design, Setting, and Participants: In a cross-sectional design, adults between ages 20 and 80 years who had audiometry testing and responded to a hearing questionnaire from the National Health and Nutrition Examination Survey (2011-2012, 2015-2016, and 2017 to March 2020 prepandemic survey cycles) were selected. Data analysis was conducted from August 13, 2022, to July 26, 2023. Main Outcomes and Measures: The weighted prevalence of subjective HL (troublesome hearing and tinnitus) and objective HL (speech-frequency HL and high-frequency HL) by audiometry were calculated. Analyses with χ2 testing and multiadjusted logistic regression models were used to compare HL between cancer survivors and the general population. To evaluate the performance of subjective HL questions as a tool to screen for objective HL by audiometry, areas under the curve were estimated using age- and gender-adjusted logistic regression. Results: Among the total 9337 participants (weighted n = 90 098 441; 51.2% women), 10.3% were cancer survivors. Compared with the general population, cancer survivors had a higher prevalence of troublesome hearing (adjusted odds ratio [AOR], 1.43; 95% CI, 1.11-1.84), tinnitus (AOR, 1.28; 95% CI, 0.94-1.74), speech-frequency HL (AOR, 1.43; 95% CI, 1.11-1.85), and high-frequency HL (AOR, 1.74; 95% CI, 1.29-2.34). When using the subjective HL tool and questioning regarding whether the participants were having troublesome hearing and/or tinnitus in screening for HL, the age- and gender-adjusted area under the curve was 0.88 in detecting speech-frequency HL and 0.90 in detecting high-frequency HL. Conclusion and Relevance: The findings of this study suggest that cancer survivors have a significantly higher prevalence of HL than the general population. Two subjective HL questions could potentially accurately identify those who have true HL and provide a simple and efficient screening tool for health care professionals. Cancer survivors and their families should be educated and encouraged to discuss hearing concerns, and health care professionals should facilitate raising awareness and provide early screening and timely referral when HL is identified.


Assuntos
Sobreviventes de Câncer , Surdez , Neoplasias , Zumbido , Adulto , Humanos , Feminino , Masculino , Zumbido/diagnóstico , Zumbido/epidemiologia , Zumbido/etiologia , Inquéritos Nutricionais , Estudos Transversais , Neoplasias/complicações , Neoplasias/epidemiologia , Perda Auditiva de Alta Frequência , Audiometria de Tons Puros
11.
Nat Commun ; 14(1): 6849, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891185

RESUMO

Atomic-level coordination engineering is an efficient strategy for tuning the catalytic performance of single-atom catalysts (SACs). However, their rational design has so far been plagued by the lack of a universal correlation between the coordination symmetry and catalytic properties. Herein, we synthesised planar-symmetry-broken CuN3 (PSB-CuN3) SACs through microwave heating for electrocatalytic CO2 reduction. Remarkably, the as-prepared catalysts exhibited a selectivity of 94.3% towards formate at -0.73 V vs. RHE, surpassing the symmetrical CuN4 catalyst (72.4% at -0.93 V vs. RHE). In a flow cell equipped with a PSB-CuN3 electrode, over 90% formate selectivity was maintained at an average current density of 94.4 mA cm-2 during 100 h operation. By combining definitive structural identification with operando X-ray spectroscopy and theoretical calculations, we revealed that the intrinsic local symmetry breaking from planar D4h configuration induces an unconventional dsp hybridisation, and thus a strong correlation between the catalytic activity and microenvironment of metal centre (i.e., coordination number and distortion), with high preference for formate production in CuN3 moiety. The finding opens an avenue for designing efficient SACs with specific local symmetries for selective electrocatalysis.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37858019

RESUMO

The amount of biomass production each year is huge, and microwave-assisted pyrolysis of biomass to obtain biogas, bio-oil, and biochar is a promising method. In this study, silicon carbide (SiC) was selected as the microwave absorber, and the effects of microwave power (400, 450, 500, 550 and 600 W), reactor chamber volume (100, 150, 200, 250, and 300 W), and the mass ratio of SiC and corn straw (0, 0.25, 0.5, 0.75, and 1) on the heating performances of corn straw particles were investigated and presented in this study. When the microwave power increased from 400 to 600 W, the average heating rate of corn straw particles increased from 23.06 ℃ /min to 101.46 ℃ /min, and that of mixture particles of corn straw and SiC increased from 87.00 ℃ /min to 236.88 ℃/min. When the reactor chamber volume increased from 100 to 300 mL, the average heating rate of corn straw particles decreased from 38.21 ℃/min to 22.54 ℃/min, and that of mixture particles of corn straw and SiC decreased from 98.84 ℃/min to 76.01 ℃/min. When the mass ratio of SiC and corn straw increased from 0 to 1, the average heating rate of mixture particles of corn straw and SiC increased from 101.46 ℃/min to 236.88 ℃/min. Some formulae with R2 values ranged from 0.971 to 0.998 were proposed to determine the transient temperatures of corn straw particles and mixture particles of corn straw and SiC.

13.
Theor Appl Genet ; 136(9): 204, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668681

RESUMO

BACKGROUND: Upland cotton wild/landraces represent a valuable resource for disease resistance alleles. Genetic differentiation between genotypes, as well as variation in Verticillium wilt (VW) resistance, has been poorly characterized for upland cotton accessions on the domestication spectrum (from wild/landraces to elite lines). RESULTS: To illustrate the effects of modern breeding on VW resistance in upland cotton, 37 wild/landraces were resequenced and phenotyped for VW resistance. Genomic patterns of differentiation were identified between wild/landraces and improved upland cotton, and a significant decline in VW resistance was observed in association with improvement. Four genotypes representing different degrees of improvement were used in a full-length transcriptome analysis to study the genetic basis of VW resistance. ROS signaling was highly conserved at the transcriptional level, likely providing the basis for VW resistance in upland cotton. ASN biosynthesis and HSP90-mediated resistance moderated the response to VW in wild/landraces, and loss of induction activity of these genes resulted in VW susceptibility. The observed genomic differentiation contributed to the loss of induction of some important VW resistance genes such as HSP90.4 and PR16. CONCLUSIONS: Besides providing new insights into the evolution of upland cotton VW resistance, this study also identifies important resistance pathways and genes for both fundamental research and cotton breeding.


Assuntos
Resistência à Doença , Verticillium , Resistência à Doença/genética , Melhoramento Vegetal , Genômica , Gossypium/genética , Genótipo
14.
J Colloid Interface Sci ; 652(Pt B): 2139-2146, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703683

RESUMO

Capacitive deionization (CDI) is perceived as a promising technology for freshwater production owing to its environmentally friendly nature and low energy consumption. To date, the development of high-performance electrode materials represents the foremost challenge for CDI technology. In this work, the porous bismuthene/MXene (P-Bi-ene/MXene) heterostructure was synthesized using a simple interfacial self-assembly method with two-dimensional (2D) bismuthene and Ti3C2Tx MXene. Within the P-Bi-ene/MXene heterostructure, the porous structure can increase the active site and facilitate ion transport. Simultaneously, MXene effectively enhances the conductivity of the heterostructure, resulting in accelerating electron transport. Due to these attributes, the P-Bi-ene/MXene heterostructure demonstrates high desalination capacity (90.0 mg/g), fast desalination rate, and good cycling performance. The simple self-assembly strategy between 2D/2D materials described herein may offer inspirations for the synthesis of innovative electrode materials with high performance.

15.
J Colloid Interface Sci ; 652(Pt A): 285-293, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595445

RESUMO

Aqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy. Due to the presence of the hierarchical freestanding structure, outstanding MXene conductive networks and abundant oxygen vacancy (in the d-NVO nanoribbons), the d-NVO@MXene hybrid film can not only expose more active sites but also possess outstanding conductivity and kinetics of charge transfer/ion diffusion. When the d-NVO@MXene hybrid film was directly used as the cathode, it displayed a high specific capacity of 498 mAh/g at 0.5 A/g and superior cycling stability performance with near 100 % coulomb efficiency. Furthermore, the corresponding storage mechanism was elucidated by ex situ various characterizations. This work provides new ideas for the development of freestanding vanadium-based cathode materials for AZIBs.

16.
Int Wound J ; 20(10): 4122-4129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555547

RESUMO

To providing evidence-based recommendations for surgery in patients with femoral neck fractures, a meta-analysis was conducted to comprehensively evaluate the effects of cemented and uncemented prostheses on postoperative surgical site wound infection and pain in these patients. Relevant studies on the use of cemented prostheses in femoral neck fractures were retrieved from PubMed, EMBASE, Cochrane Library, Ovid, CNKI, and Wanfang databases from the time of their establishment until March 2023. Two authors independently screened and extracted data from the included and excluded literature according to predetermined criteria. Review Manager 5.4 software was used to perform meta-analyses on the collected data. A total of 27 articles comprising 34 210 patients (24 646 cases in the cemented group and 9564 cases in the uncemented group) were included in the final analysis. The results of the meta-analysis showed that, compared with the uncemented group, cemented prostheses significantly reduced the incidence of surgical site wound infections (odds ratio [OR]: 0.75, 95% confidence interval [CI]: 0.64-0.88, p < 0.001) and relieved surgical site wound pain (standardised mean difference: -0.76, 95% CI: -1.12-0.40, p < 0.001), but did not reduce the incidence of pressure ulcers after surgery (OR: 0.50, 95% CI: 0.20-1.26, p = 0.140). Therefore, existing evidence suggests that the use of cemented prostheses in femoral neck fracture surgery can significantly reduce the incidence of surgical site wound infections and relieve surgical site wound pain, which is worthy of clinical recommendation.


Assuntos
Fraturas do Colo Femoral , Hemiartroplastia , Humanos , Cimentos Ósseos/uso terapêutico , Hemiartroplastia/métodos , Dor , Próteses e Implantes , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/cirurgia , Fraturas do Colo Femoral/cirurgia , Resultado do Tratamento
17.
Front Immunol ; 14: 1198391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449209

RESUMO

Background: Aberrant DNA damage repair (DDR) is one of the hallmarks of tumors, and therapeutic approaches targeting this feature are gaining increasing attention. This study aims to develop a signature of DDR-related genes to evaluate the prognosis of cervical cancer (CC). Methods: Differentially expressed genes were identified between high and low DDR groups of cells from the single-cell RNA sequencing dataset GSE168652 based on DDR scores. Using the ssGSEA and WGCNA methods, DDR-related differentially expressed genes were identified from different patients within the TCGA-CESC cohort. Using Cox analysis and LASSO regression analysis, a DDR-related gene signature was constructed based on the intersection of two groups of differentially expressed genes and DDR-related genes from WGCNA, and validated in GSE52903. Immune cell infiltration analysis, mutation analysis, survival analysis, drug sensitivity analysis, etc., were performed in different groups which were established based on the DDR gene signature scoring. A key gene affecting prognosis was selected and validated through biological experiments such as wound healing, migration, invasion, and comet assays. Results: A novel DDR-related signature was constructed and the nomogram results showed this signature performed better in predicting prognosis than other clinical features for CC. The high DDR group exhibited poorer prognosis, weaker immune cell infiltration in the immune microenvironment, lower expression of immune checkpoint-related genes, lower gene mutation frequencies and more sensitivity to drugs such as BI.2536, Bleomycin and etc. ITGB1, ZC3H13, and TOMM20 were expressed at higher levels in CaSki and HeLa cells compared to ECT1 cells. Compared with the native CaSki and HeLa cells, the proliferation, migration, invasion and DDR capabilities of CaSki and HeLa cell lines with ITGB1 suppressed expression were significantly decreased. Conclusion: The 7 DDR-related gene signature was an independent and powerful prognostic biomarker that might effectively evaluate the prognosis of CC and provide supplementary information for a more personalized evaluation and precision therapy. ITGB1 was a potential candidate gene that may affect the DDR capacity of CC cells, and its mechanism of action was worth further in-depth study.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Células HeLa , Bleomicina , Reparo do DNA , Dano ao DNA , Microambiente Tumoral/genética
18.
J Hazard Mater ; 459: 132147, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515993

RESUMO

Recently, friction-induced tribocatalysis has received tremendous attention through converting mechanical energy to chemical energy. However, its efficiency is much lower than those of photocatalysis and piezocatalysis, and its environmental application is limited in dye degradation. Herein, we developed a facile approach to improve the tribocatalytic activity of Bi2WO6 via adding trace polymer powders to form friction pairs with Bi2WO6. Among various polymers, PTFE was demonstrated to be the best counterpart of Bi2WO6. Subsequently, the PTFE dosage, stirring rate, magnetic bar size and number, and stirring mode were further optimized. The PTFE-promoted Bi2WO6 tribocatalysis was verified to possess excellent performance not only for removing different dyes, but also for degrading chlorophenols that are typical persistent organic pollutants. Multiple uses of the recycled catalysts indicated its good stability and prominent tribocatalytic durability. EPR measurements suggested the generation of hydroxyl radical and superoxide radical, which were determined to be continuously generated within 12 h at the rates of 0.88 µM h-1 and 85 µM h-1, respectively. Subsequently, a possible mechanism was proposed to explain the enhanced performance of the PTFE-promoted Bi2WO6 tribocatalysis. Finally, on basis of the detected intermediates, the degradation pathways of Rhodamine B and 2,4-Dichlorophenol during tribocatalysis were suggested.

19.
J Colloid Interface Sci ; 648: 357-364, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301160

RESUMO

Capacitive deionization (CDI) is regarded as a promising desalination technology owing to its low cost and environmental friendliness. However, the lack of high-performance electrode materials remains a challenge in CDI. Herein, the hierarchical bismuth-embedded carbon (Bi@C) hybrid with strong interface coupling was prepared through facile solvothermal and annealing strategy. The hierarchical structure with strong interface coupling between the bismuth and carbon matrix afforded abundant active sites for chloridion (Cl-) capture, improved electrons/ions transfer and the stability of the Bi@C hybrid. As a result of these advantages, the Bi@C hybrid showed a high salt adsorption capacity (75.3 mg/g under 1.2 V), salt adsorption rate and good stability, making it a promising electrode material for CDI. Furthermore, the desalination mechanism of the Bi@C hybrid was elucidated through various characterizations. Therefore, this work provides valuable insights for the design of high-performance bismuth-based electrode materials for CDI.

20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 821-827, 2023 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-37368383

RESUMO

OBJECTIVE: To explore the genetic basis of two fetuses with an osteogenesis imperfecta (OI) phenotype. METHODS: Two fetuses diagnosed at the Affiliated Hospital of Weifang Medical College respectively on June 11, 2021 and October 16, 2021 were selected as the study subjects. Clinical data of the fetuses were collected. Amniotic fluid samples of the fetuses and peripheral blood samples of their pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing (WES) and Sanger sequencing were carried out to identify the candidate variants. Minigene splicing reporter analysis was used to validate the variant which may affect the pre-mRNA splicing. RESULTS: For fetus 1, ultrasonography at 17+6 weeks of gestation had revealed shortening of bilateral humerus and femurs by more than two weeks, in addition with multiple fractures and angular deformities of long bones. WES revealed that fetus 1 had harbored a heterozygous c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in exon 49 of the COL1A1 gene (NM_000088.4). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting) for disrupting the downstream open reading frame resulting in premature translational termination, being de novo in origin, and lacking records in the population and disease databases.For fetus 2, ultrasonography at 23 weeks of gestation also revealed shortening of bilateral humerus and femurs by one and four weeks, respectively, in addition with bending of bilateral femurs, tibias and fibulas. Fetus 2 had harbored a heterozygous c.1557+3A>G variant in intron 26 of the COL1A2 gene (NM_000089.4). Minigene experiment showed that it has induced skipping of exon 26 from the COL1A2 mRNA transcript, resulting in an in-frame deletion (c.1504_1557del) of the COL1A2 mRNA transcript. The variant was inherited from its father and had been previously reported in a family with OI type 4. It was therefore classified as a pathogenic variant (PS3+PM1+PM2_Supporting+PP3+PP5). CONCLUSION: The c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in the COL1A1 gene and c.1557+3A>G variant in the COL1A2 gene probably underlay the disease in the two fetuses. Above findings not only have enriched the mutational spectrum of OI, but also shed light on the correlation between its genotype and phenotype and provided a basis for genetic counseling and prenatal diagnosis for the affected pedigrees.


Assuntos
Osteogênese Imperfeita , Feminino , Humanos , Gravidez , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feto , Mutação , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...