RESUMO
Tilmicosin (TMS) is an important antibiotic in veterinary medicine, but its extreme bitter taste limits its use. In this study, TMS was encapsulated in octenyl succinic anhydride modified starch/maltodextrin (HI-CAP/MD) composite capsules with a spray drying method. The TMS microcapsules (TMS-MC) exhibited good drug loading performance with drug loading (DL) and encapsulation efficiency (EE) of 9.90 ± 0.23 % and 98.03 ± 1.56 %, respectively. There was no significant change in particle diameter and zeta potential for the emulsion and redissolved TMS-MC. These results combined with FT-IR, TGA and DSC showed the crystalline shape and chemical structure of TMS did not change during the microencapsulation. In vitro release characterization in an acidic medium (pH 1.2) and an alkaline medium (phosphate buffered solution, pH 6.8) showed that TMS-MC can be rapidly released in vitro. The bitterness evaluation implied the bitterness of TMS was masked after microencapsulation. In vitro bacterial inhibition test showed the bacterial inhibitory activity of TMS was not reduced by the microencapsulation, but was much better than that of the commercially available tylosin (TLS). Therefore, HI-CAP/MD can effectively encapsulate TMS, mask the bitter taste and maintain a good bacterial inhibitory effect, making a new drug formulation with good development prospects.
RESUMO
Background: Delayed wound healing in skin injuries has become a significant problem in clinics, seriously affecting and even threatening life and health. Recently, research interest has increased in developing wound dressings containing bioactive compounds capable of improving outcomes for complex healing needs. Methods: In this study, Puerarin-loaded nanoparticles (Pue-NPs) were prepared using the cell-penetrating peptide-poly (lactic-co-glycolic acid) (CPP-PLGA) as a drug carrier by the emulsified solvent evaporation method. Then, they were added into poly (acrylic acid) to obtain a self-assembled nanocomposite hydrogels (SANHs) drug delivery system using the co-polymerization method. The particle size, zeta potential, and micromorphology of Pue-NPs were measured; the appearance, mechanical properties, adhesive strength, and biological activity of SANHs were performed. Finally, the potential of SANHs for wound healing was further evaluated in streptozotocin-induced diabetic mice. Results: Pue-NPs were regularly spherical, with an average particle size of 134.57 ± 1.42 nm and a zeta potential of 2.14 ± 0.78 mV. SANHs was colorless and transparent with a honeycomb-like porous structure and had an excellent swelling ratio (917%), water vapor transmission rate (3077 g·m-2·day-1), mechanical properties (Young's modulus of 18 kPa, elongation at break of 307%), and adhesive strength (15.5 kPa). SANHs exhibited sustained release of Pue over 48h, with a cumulative release of 55.60 ± 6.01%. In vitro tests revealed that the SANHs presented a 92.22% antibacterial rate against Escherichia coli after 4h, and a 61.91% scavenging rate of 1.1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical. In vivo experiments showed that SANHs accelerated wound repair by reducing the inflammatory response at the wound site, promoting angiogenesis, and facilitating epidermal regeneration and collagen deposition. Conclusion: In conclusion, we successfully prepared SANHs. Our results show that SANHs have excellent performance and improves wound healing in diabetic mice model, indicating that it can be used to develop an effective strategy for the treatment of diabetic wounds.