Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000649

RESUMO

Irreversible curing distortion represents a significant limiting factor in the application of high-performance composite structures. Curing distortion is the deviation of a component's profile from the theoretical profile after demolding. Introducing the optimal compensation profile into the traditional compensation algorithm represents an effective method to enhance CFRPs' forming accuracy. For this method, it is necessary to obtain the optimal compensating profile by establishing the coordinate model of the curing process parameter and mold profile compensation. The coordinated control model consists of four parameters: the mean value (Dav), root mean square value (Dmsr), minimum (Dmin), and maximum (Dmax) of curing distortion. Two sizes of composite structural parts are manufactured using the global compensation method. We investigate the influence mechanisms of heating, holding, and cooling times on curing distortion and residual stresses and develop a multi-field coupled finite element model. Strong agreement between the numerical and experimental findings serves as evidence for the effectiveness of the numerical model. The middle layer of the fabricated parts exhibit a reduction in residual stresses as the heating and holding times increase, while an opposite trend is noted with an increase in cooling time. Refining the design of curing process parameters can yield the minimum value of curing deformation within the specified resin system interval. Comparisons indicate that the distortion of the composite wall panel structure is reduced by 86.2% through the use of the global compensation method, demonstrating the validity of this approach for composite structures.

2.
Metab Brain Dis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963634

RESUMO

Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.

3.
Environ Pollut ; 359: 124505, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968986

RESUMO

The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.

4.
Adv Sci (Weinh) ; : e2400149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898748

RESUMO

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.

5.
J Colloid Interface Sci ; 672: 805-813, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875836

RESUMO

Short-side-chain perfluorosulfonic acid (SSC-PFSA) ionomers with high ion-exchange-capacity are promising candidates for high-temperature proton exchange membranes (PEMs) and catalyst layer (CL) binders. The solution-casting method determines the importance of SSC-PFSA dispersion characteristics in shaping the morphology of PEMs and CLs. Therefore, a thorough understanding of the chain behavior of SSC-PFSA in dispersions is essential for fabricating high-quality PEMs and CLs. In this study, we have employed multiple characterization techniques, including dynamic light scatting (DLS), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscope (Cryo-TEM), to fully study the chain aggregation behaviors of SSC-PFSA in water-ethanol solvents and elucidate the concentration-dependent self-assembly process. In dilute dispersions (2 mg/mL), SSC-PFSA assembles into mono-disperse rod-like aggregates, featuring a twisted fluorocarbon backbone that forms a hydrophobic stem, and the sulfonic acid side chains extending outward to suit the hydrophilic environment. As the concentration increases, the radius of rod particles increases from 1.47 to 1.81 nm, and the mono-disperse rod particles first form a "end-to-end" configuration that doubles length (10 mg/mL), and then transform into a swollen network structure in semi-dilute dispersion (20 mg/mL). This work provides a well-established structure model for SSC-PFSA dispersions, which is the key nanostructure to be inherited by PEMs.

6.
J Colloid Interface Sci ; 673: 444-452, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878378

RESUMO

Electrocatalytic water splitting (EWS) for hydrogen production is considered an ideal strategy for utilizing renewable energy, reducing fossil fuel consumption, and addressing environmental pollution issues. Traditional noble metal electrocatalysts have excellent performance, but their cost is high. Developing efficient, stable, and relatively inexpensive dual functional electrocatalysts is crucial for promoting large-scale EWS hydrogen production processes. Herein, a simple one-step electrodeposition method was used to grow nickel-iron phosphorus-sulfides (NiFePS) on the surface of hydrophilic treated carbon cloth (CC). The resultant NiFePS/CC with a phosphorus to sulfur ratio of 1:4 exhibited the best electrocatalytic performance, requiring only -91 mV and 216 mV overpotentials to generate the current densities of 10 mA·cm-2 in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. When it was used as a bifunctional electrocatalyst to overall water splitting (OWS), a voltage of 1.536 V can generate a current density of 10 mA·cm-2. The excellent electrocatalytic performance can be ascribed to two factors: 1) the CC with excellent conductivity serves as a growth substrate, reducing the impedance of charge transfer from the electrode to the electrolyte and accelerating the electron transfer rate; 2) The large number of ultra-thin nanosheets formed on the surface of the catalyst increase the electrochemical specific surface area, expose more reaction sites, and thus improve the electrocatalytic reaction performance. This work provides a new approach for designing efficient non-noble metal electrocatalysts for water splitting.

7.
BMC Public Health ; 24(1): 1363, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773497

RESUMO

BACKGROUND: Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS: Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS: The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS: Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.


Assuntos
Serviço Hospitalar de Emergência , Doenças Respiratórias , Humanos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Pequim/epidemiologia , Pré-Escolar , Adolescente , Lactente , Criança , Adulto Jovem , Doenças Respiratórias/epidemiologia , Temperatura , Fatores de Tempo , Recém-Nascido , Idoso de 80 Anos ou mais , Poluição do Ar/efeitos adversos , Visitas ao Pronto Socorro
8.
Environ Int ; 186: 108629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582060

RESUMO

Recently, extreme wildfires occur frequently around the world and emit substantial brown carbon (BrC) into the atmosphere, whereas the molecular compositions and photochemical evolution of BrC remain poorly understood. In this work, primary smoke aerosols were generated from wood smoldering, and secondary smoke aerosols were formed by the OH radical photooxidation in an oxidation flow reactor, where both primary and secondary smoke samples were collected on filters. After solvent extraction of filter samples, the molecular composition of dissolved organic carbon (DOC) was determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The molecular composition of dissolved BrC was obtained based on the constraints of DOC formulae. The proportion of dissolved BrC fractions accounted for approximately 1/3-1/2 molecular formulae of DOC. The molecular characteristics of dissolved BrC showed higher levels of carbon oxidation state, double bond equivalents, and modified aromaticity index than those of DOC, indicating that dissolved BrC fractions were a class of organic structures with relatively higher oxidation state, unsaturated and aromatic degree in DOC fractions. The comparative analysis suggested that aliphatic and olefinic structures dominated DOC fractions (contributing to 70.1%-76.9%), while olefinic, aromatic, and condensed aromatic structures dominated dissolved BrC fractions (contributing to 97.5%-99.9%). It is worth noting that dissolved BrC fractions only contained carboxylic-rich alicyclic molecules (CRAMs)-like structures, unsaturated hydrocarbons, aromatic structures, and highly oxygenated compounds. CRAMs-like structures were the most abundant species in both DOC and dissolved BrC fractions. Nevertheless, the specific molecular characteristics for DOC and dissolved BrC fractions varied with subgroups after aging. The results highlight the similarities and differences in the molecular compositions and characteristics of DOC and dissolved BrC fractions with aging. This work will provide insights into understanding the molecular composition of DOC and dissolved BrC in smoke.


Assuntos
Aerossóis , Carbono , Fumaça , Madeira , Carbono/análise , Carbono/química , Fumaça/análise , Madeira/química , Aerossóis/análise , Aerossóis/química , Oxirredução , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Processos Fotoquímicos
10.
Ecotoxicol Environ Saf ; 274: 116234, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503107

RESUMO

BACKGROUND: Studies have shown that short- and long-term exposure to particulate matter (PM) can increase the risk of asthma morbidity and mortality. However, the effect of medium-term exposure remains unknown. We aim to examine the effect of medium-term exposure to size-fractioned PM on asthma exacerbations among asthmatics with poor medication adherence. METHODS: We conducted a longitudinal study in China based on the National Mobile Asthma Management System Project that specifically and routinely followed asthma exacerbations in asthmatics with poor medication adherence from April 2017 to May 2019. High-resolution satellite remote-sensing data were used to estimate each participant's medium-term exposure (on average 90 days) to size-fractioned PM (PM1, PM2.5, and PM10) based on the residential address and the date of the follow-up when asthma exacerbations (e.g., hospitalizations and emergency room visits) occurred or the end of the follow-up. The Cox proportional hazards model was employed to examine the hazard ratio of asthma exacerbations associated with each PM after controlling for sex, age, BMI, education level, geographic region, and temperature. RESULTS: Modelling results revealed nonlinear exposure-response associations of asthma exacerbations with medium-term exposure to PM1, PM2.5, and PM10. Specifically, for emergency room visits, we found an increased hazard ratio for PM1 above 22.8 µg/m3 (1.060, 95 % CI: 1.025-1.096, per 1 µg/m3 increase), PM2.5 above 38.2 µg/m3 (1.032, 95 % CI: 1.010-1.054), and PM10 above 78.6 µg/m3 (1.019, 95 % CI: 1.006-1.032). For hospitalizations, we also found an increased hazard ratio for PM1 above 20.3 µg/m3 (1.055, 95 % CI: 1.001-1.111) and PM2.5 above 39.2 µg/m3 (1.038, 95 % CI: 1.003-1.074). Furthermore, the effects of PM were greater for a longer exposure window (90-180 days) and among participants with a high BMI. CONCLUSION: This study suggests that medium-term exposure to PM is associated with an increased risk of asthma exacerbations in asthmatics with poor medication adherence, with a higher risk from smaller PM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Humanos , Material Particulado/toxicidade , Estudos Longitudinais , Exposição Ambiental/análise , Asma/tratamento farmacológico , Asma/epidemiologia , Asma/induzido quimicamente , China/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise
11.
Neuron ; 112(9): 1473-1486.e6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447577

RESUMO

Phasic (fast) and tonic (sustained) inhibition of γ-aminobutyric acid (GABA) are fundamental for regulating day-to-day activities, neuronal excitability, and plasticity. However, the mechanisms and physiological functions of glial GABA transductions remain poorly understood. Here, we report that the AMsh glia in Caenorhabditis elegans exhibit both phasic and tonic GABAergic signaling, which distinctively regulate olfactory adaptation and neuronal aging. Through genetic screening, we find that GABA permeates through bestrophin-9/-13/-14 anion channels from AMsh glia, which primarily activate the metabolic GABAB receptor GBB-1 in the neighboring ASH sensory neurons. This tonic action of glial GABA regulates the age-associated changes of ASH neurons and olfactory responses via a conserved signaling pathway, inducing neuroprotection. In addition, the calcium-evoked, vesicular glial GABA release acts upon the ionotropic GABAA receptor LGC-38 in ASH neurons to regulate olfactory adaptation. These findings underscore the fundamental significance of glial GABA in maintaining healthy aging and neuronal stability.


Assuntos
Adaptação Fisiológica , Caenorhabditis elegans , Neuroglia , Ácido gama-Aminobutírico , Animais , Ácido gama-Aminobutírico/metabolismo , Neuroglia/metabolismo , Neuroglia/fisiologia , Adaptação Fisiológica/fisiologia , Olfato/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais/fisiologia , Senescência Celular/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Receptores de GABA-A/metabolismo
12.
ACS Appl Mater Interfaces ; 16(11): 13893-13902, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462697

RESUMO

It is challenging to synthesize oxygen reduction reaction (ORR) electrocatalysts that are highly efficient, affordable, and stable for use in proton exchange membrane fuel cells. To address this challenge, we developed a low platinum-loading (only 6.68% wt) ORR catalyst (PtCu1-NC), comprising CuPt nanoparticles (average size: 1.51 nm) supported on the N-doped carbon substrates. PtCu1-NC possesses a high specific surface area of 662 m2 g-1 and a hierarchical porous structure, facilitating efficient mass transfer. The synergistic effect from introduced copper and the electron effect from nitrogen modify the electronic structure of platinum, effectively accelerating the ORR reaction and enhancing stability. Density functional theory calculations demonstrate the catalytic mechanism and further verify the synergistic effect. Electrochemical assessments indicate that PtCu1-NC exhibits specific activity and mass activity 5.3 and 5.6 times higher, respectively, than commercial Pt/C. The half-wave potential is 27 mV more positive than that of commercial Pt/C. The electrochemical active surface area value is 104.3 m2 g-1, surpassing that of Pt/C. Approximately 78% of current is retained after 10,000 s chronoamperometry measurement. These results highlight the effectiveness of alloying in improving the catalyst performance.

13.
Polymers (Basel) ; 16(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38399883

RESUMO

The development of precious metal-free (M-N-C) catalysts for the oxygen reduction reaction (ORR) is considered crucial for reducing fuel cell costs. Herein, Co-Zn/NC interconnected frameworks with uniformly dispersed Co nanoparticles and graphitic carbon are designed and successfully synthesized through the in situ growth of zeolitic imidazolate frameworks (ZIF67 and ZIF8) along with biomass nano-microfibrillar cellulose (MFC), followed by pyrolysis. A Co-Zn/NC composite is prepared by combining Co-Zn/NC with a perfluorosulfonic acid polymer. The Co-Zn/NC composite catalyst exhibits excellent ORR catalytic activity (E0 = 0.974 V vs. RHE, E1/2 = 0.858 V vs. RHE) and good long-term durability, with 90% current retention after 10000s, surpassing that of commercial Pt/C in alkaline media. The hierarchical porous structure, coupled with the uniform distribution of Co nanoparticles and nitrogen doping, contributes to superior electrocatalytic performance, while the interconnected frameworks and graphitic carbon ensure good stability. Additionally, the Co-Zn/NC composite demonstrates promising applications in acidic media. This strategy offers significant guidance to develop advanced non-precious metal carbon-based catalysts for highly efficient and stable ORR.

14.
BMJ Open ; 14(2): e080318, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388503

RESUMO

OBJECTIVES: To assess the association between ambient temperature and diurnal temperature range (DTR) on emergency admissions for hyperventilation syndrome (HVS). DESIGN: Distributed lag non-linear model design was used with a lag time to 5 days. SETTING: Emergency admission data used were from the Beijing Red Cross Emergency Centre (2017-2018). PARTICIPANTS AND EXPOSURE: Cases were those with emergency visits to the Beijing Emergency Center during the period 2017-2018 and who were given the primary outcome indicator defined as HVS according to the International Classification of Diseases, 10th edition code F45.303. Ambient temperature and DTR were used as exposure factors with adjustments for relative humidity, wind speed, precipitation, seasonality long-term trend and day of the week. MAIN OUTCOME MEASURE: We used the minimum emergency visits temperature as a reference to indicate the relative risk with 95% CI of exposure-response for the risk of HVS visits at different temperatures. RESULTS: A u-shape was described between ambient temperature and HVS visits, with a minimum risk at 12°C. Moderate heat (23°C) at lag (0-3) days, extreme heat at lag 0 days, had greatest relative risks on HVS visits, with 2.021 (95% CI 1.101 to 3.71) and 1.995 (95% CI 1.016 to 3.915), respectively. A stronger association between HVS visits and temperature was found in women and aged ≤44 years. Notably, the relationship between DTR and HVS visits appeared a reverse u-shaped. Low DTR (4°C) effect appeared at lag (0-1) days with 0.589 (95% CI 0.395 to 0.878), lasting until lag (0-3) days with 0.535 (95% CI 0.319 to 0.897) and was associated with a reduced risk of HVS visits in women and those aged ≤44 years. CONCLUSIONS: Ambient temperature and DTR were associated with HVS visits, appearing a differentiation in gender and age groups. Timely prevention strategies during high temperatures and control mild changes in temperature might reduce the risk of HVS.


Assuntos
Temperatura Baixa , Hiperventilação , Humanos , Feminino , Temperatura , Pequim/epidemiologia , China/epidemiologia , Temperatura Alta
15.
BMC Anesthesiol ; 24(1): 40, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287259

RESUMO

BACKGROUND: This meta-analysis was designed to compare the safety and efficiency of remimazolam with those of propofol in patients undergoing gastroscope sedation. METHODS: We searched PubMed, Cochrane Library, Embase, Ovid, Wanfang Database, China National Knowledge Infrastructure, SINOMED, and ClinicalTrials.gov for studies that reported on remimazolam versus propofol for gastroscope sedation from establishment to February 25, 2023. The sedative efficiency and the incidence of adverse events were assessed as outcomes. Version 2 of the Cochrane risk-of-bias assessment tool was used to assess the risk of bias. Review Manager 5.4 and STATA 17 were used to perform all statistical analyses. RESULTS: A total of 26 randomized controlled trials involving 3,641 patients were included in this meta-analysis. The results showed that remimazolam had a significantly lower incidence of respiratory depression (risk ratio [RR] = 0.40, 95% confidence interval [CI]: 0.28-0.57; p < 0.01, GRADE high), hypoxemia (RR = 0.34, 95% CI: 0.23-0.49; p < 0.01, GRADE high), bradycardia (RR = 0.34, 95% CI: 0.23-0.51; p < 0.01, GRADE high), dizziness (RR = 0.45, 95% CI: 0.31-0.65; p < 0.01, GRADE high), injection site pain (RR = 0.06, 95% CI: 0.03-0.13; p < 0.01, GRADE high), nausea or vomiting (RR = 0.79, 95% CI: 0.62-1.00; p = 0.05, GRADE moderate), and hypotension (RR = 0.36, 95% CI: 0.26-0.48; p < 0.01, GRADE low). CONCLUSIONS: Remimazolam can be used safely in gastroscopic sedation and reduces the incidence of respiratory depression, hypoxemia, bradycardia, injection site pain, and dizziness compared with propofol, and doesn't increase the incidence of nausea and vomiting.


Assuntos
Benzodiazepinas , Propofol , Insuficiência Respiratória , Humanos , Propofol/efeitos adversos , Gastroscópios , Bradicardia/induzido quimicamente , Bradicardia/epidemiologia , Tontura/induzido quimicamente , Vômito/induzido quimicamente , Vômito/epidemiologia , Náusea/induzido quimicamente , Náusea/epidemiologia , Dor/induzido quimicamente , Insuficiência Respiratória/induzido quimicamente , Hipóxia/induzido quimicamente , Hipóxia/epidemiologia , Hipóxia/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Environ Res ; 241: 117591, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926226

RESUMO

It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 µM to 180 µM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 µM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.


Assuntos
Clorofenóis , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Biodegradação Ambiental
17.
J Gene Med ; 26(1): e3604, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37880853

RESUMO

BACKGROUND: Breast cancer (BC) is the most common cancer among women worldwide and a leading cause of cancer-associated deaths among women. However, there is a lack of accurate prognostic biomarkers for BC. In the present study, we aimed to identify a genomic instability (GI)-associated microRNA signature as a novel potential prognostic biomarker in BC. METHODS: We performed an integrative analysis to investigate the relationship between GI and BC and identify GI-associated microRNAs (miRNAs). Subsequently, we conducted a discovery and validation study using multicenter cohorts. The GI-associated miRNA signature was developed in the discovery cohort and independently validated in internal and external cohorts. RESULTS: GI-associated miRNAs expression in BC showed heterogeneity and was significantly correlated with BC prognosis. We identified a GI-associated two-miRNA signature (miR-105-5p and miR-767-5p), termed GI2miR, that stratified BC patients into high-risk and low-risk groups with significantly different clinical outcomes (log-rank p = 0.027) in The Cancer Genome Atlas (TCGA) discovery cohort (n = 763). The prognostic value of GI2miR was further validated in internal TCGA validation cohort (n = 253) (log-rank p = 0.035) and independent GSE22216 cohort (n = 210) (log-rank p = 0.036). The GI2miR demonstrated independent prognostic value in multivariate Cox proportional hazard regression analyses and stratification analysis. CONCLUSIONS: We have developed a novel prognostic signature based on GI-associated two miRNAs for BC, which may lay the foundation for BC to improve prognosis prediction.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores
18.
Rapid Commun Mass Spectrom ; 38(1): e9662, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38073199

RESUMO

RATIONALE: Tetrandrine, the Q-marker in Stephaniae Tetrandrae Radix, was proven to present an obvious antitumor effect. Until now, the metabolism and antitumor mechanism of tetrandrine have not been fully elucidated. METHODS: The metabolites of tetrandrine in rats were profiled using ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry. The potential antitumor mechanism of tetrandrine in vivo was predicted using network pharmacology. RESULTS: A total of 30 metabolites were characterized in rats after ingestion of tetrandrine (10 mg/kg), including 0 in plasma, 7 in urine, 11 in feces, 9 in liver, 8 in spleen, 4 in lung, 5 in kidney, 5 in heart, and 4 in brain. This study was the first to show the metabolic processes demethylation, hydroxylation, and carbonylation in tetrandrine. The pharmacology network results showed that tetrandrine and its metabolites could regulate AKT1, TNF, MMP9, MMP2, PAK1, and so on by involving in proteoglycan tumor pathway, PI3K-Akt signaling pathway, tumor pathway, MAPK signaling pathway, and Rap1 signaling pathway. CONCLUSIONS: The metabolism features of tetrandrine and its potential antitumor mechanism were summarized, providing data for further pharmacological validation.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Ratos , Animais , Fosfatidilinositol 3-Quinases , Farmacologia em Rede , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
19.
Sci Total Environ ; 912: 169517, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142007

RESUMO

Actual wastewater generated from N-methylpyrrolidone (NMP) manufacture was used as electron donor for tertiary denitrification. The organic components of NMP wastewater were mainly NMP and monomethylamine (CH3NH2), and their biodegradation released ammonium that was nitrified to nitrate that also had to be denitrified. Bench-scale experiments documented that alternating denitrification and nitrification realized effective total­nitrogen removal. Ammonium released from NMP was nitrified in the aerobic reactor and then denitrified when actual NMP wastewater was used as the electron donor for endogenous and exogenous nitrate. Whereas TN and NMP removals occurred in the denitrification step, dissolved organic carbon (DOC) and CH3NH2 removals occurred in the denitrification and nitrification stages. The genera Thauera and Paracoccus were important for NMP biodegradation and denitrification in the denitrification reactor; in the nitrification stage, Amaricoccus and Sphingobium played key roles for biodegrading intermediates of NMP, while Nitrospira was responsible for NH4+ oxidation to NO3-. Pilot-scale demonstration was achieved in a two-stage vertical baffled bioreactor (VBBR) in which total­nitrogen removal was realized sequential anoxic-oxic treatment without biomass recycle. Although the bench-scale reactors and the VBBR had different configurations, both effectively removed total nitrogen through the same mechanisms. Thus, an N-containing organic compound in an industrial wastewater could be used to drive total-N removal in a tertiary-treatment scenario.


Assuntos
Compostos de Amônio , Pirrolidinonas , Águas Residuárias , Desnitrificação , Nitratos/metabolismo , Elétrons , Nitrificação , Nitrogênio/metabolismo , Reatores Biológicos , Esgotos
20.
Mol Ther Oncolytics ; 31: 100746, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38020061

RESUMO

[This corrects the article DOI: 10.1016/j.omto.2019.12.007.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...