Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Adv Mater ; : e2410096, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385644

RESUMO

Ultra-narrowband multiple resonance (MR) emitters are a key component in the fabrication of highly efficient and stable blue organic light-emitting diodes (OLEDs). To explore the theoretical boundaries of wavelength and full width at half maximum (FWHM) in blue emitters, the currently narrowest boron-based MR emitter is carefully designed by integrating the superior v-DABNA and BBCz-DB structures under the auspices of the ingenious short-range charge-transfer region regulation strategy. The target tetraboron compound TB-PB demonstrates a blue emission with an emission maximum of 473 nm, a small FWHM of 12 nm and a CIEy coordinate of 0.14. Benefiting from the emitter's high photoluminescence quantum yield (99%), low excited-state energy (2.74 eV) and short delayed fluorescence lifetime (0.53 µs), the corresponding OLED achieves exceptional efficiencies of 36.4%, 49.1 cd A-1, and 51.4 lm W-1 with a record-high luminescence of 9.0 × 105 cd m-2, an ultra-narrow FWHM of 15 nm and a CIEy coordinate of 0.20. These breakthroughs will accelerate the development of next-generation blue emitters and lead to the advancement of OLED technology.

2.
Immun Inflamm Dis ; 12(9): e70007, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222024

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) play a pivotal role in immunosuppression and tumor progression in hepatocellular carcinoma (HCC). While various treatments like surgical resection, ablation, and radiotherapy have been studied for their effects on circulating MDSC frequencies in HCC patients, the findings remain inconclusive. Transarterial Chemoembolization (TACE) stands as the standard care for unresectable HCC, with Microparticle TACE (mTACE) gaining prominence for its capacity to induce significant tumor necrosis. However, the immunological ramifications of such pathological outcomes are scarcely reported. METHODS AND RESULTS: This study aims to elucidate the alterations in MDSC subtypes, specifically monocytic MDSCs (mMDSCs) and early-stage MDSCs (eMDSCs), post-mTACE and to investigate their clinical correlations in HCC patients. A cohort comprising 75 HCC patients, 16 liver cirrhosis patients, and 20 healthy controls (HC) was studied. Peripheral blood samples were collected and analyzed for MDSC subtypes. The study also explored the associations between MDSC frequencies and various clinical parameters in HCC patients. The frequency of mMDSCs was significantly elevated in the HCC group compared to liver cirrhosis and HC. Importantly, mMDSC levels were strongly correlated with aggressive clinical features of HCC, including tumor size, vascular invasion, and distant metastasis. Post-mTACE, a marked reduction in mMDSC frequencies was observed, while eMDSC levels remained stable. CONCLUSIONS: Our findings underscore the critical role of mMDSCs in HCC pathogenesis and their potential as a therapeutic target. The study also highlights the efficacy of mTACE in modulating the immunosuppressive tumor microenvironment, thereby opening new avenues for combinatorial immunotherapeutic strategies in HCC management.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Células Supressoras Mieloides , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células Supressoras Mieloides/imunologia , Quimioembolização Terapêutica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Adulto , Microambiente Tumoral/imunologia
3.
Angew Chem Int Ed Engl ; : e202415400, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258563

RESUMO

Despite the proliferation of multiple resonance (MR) materials in the blue to green spectral ranges, red MR emitters remain scarce in the literature, an area that certainly warrants attention for future applications. Here, through a clever application of classic Clar's aromatic π-sextet rule, we triumphantly constructed the first red MR emitter by substituting the conventional benzene ring core with anthracene (fewer π-sextets). Theoretical studies indicate that the quantity of π-sextets ultimately determines the optical bandgap of a molecule, rather than the number of fused benzene rings. Benefiting from the high photoluminescence quantum yield of ~94% and horizontal dipole ratio of ~90%, the corresponding narrowband red (luminescence wavelength: 608 nm) organic light-emitting diode shows a high external quantum efficiency of 27.3%, with only a slight decrease of 3.7% at an elevated luminance level of 100,000 cd/m2.

4.
Nat Mater ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266678

RESUMO

Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m-2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l'Eclairage coordinates of (0.14, 0.17).

5.
Quant Imaging Med Surg ; 14(9): 6556-6565, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39281156

RESUMO

Background: Endoleaks are common complications after endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Computed tomographic angiography (CTA)/digital subtraction angiography (DSA) is considered the gold standard for evaluating contrast-enhanced ultrasound (CEUS) accuracy in the detection and classification of endoleaks. In recent years, CEUS has been widely used in this field. This study aimed to analyze the accuracy of CEUS in the detection and classification of endoleaks after EVAR. Methods: The data of 98 patients who underwent abdominal aorta CEUS from November 2017 to September 2023 in the ultrasound (US) department of Beijing Hospital were retrospectively analyzed. All the patients underwent EVAR of AAA before CEUS and CTA/DSA, and had complete clinical data. The CEUS and CTA/DSA results were compared to detect endoleaks and categorize the specific types of endoleaks. Results: Among the 98 patients, 74 were male and 24 were female. The patients had an average age of 74.8±9.8 years (range, 43-90 years). Among the 98 patients, 37 (37.8%) endoleaks were detected by CEUS, of which 8 were type Ia, 2 were type Ib, 15 were type II, 7 were type III, 2 were type IV, 2 were type Ia combined with type III, and 1 was type II combined with type III. In addition, among these 98 patients, 39 (39.8%) endoleaks were detected by CTA/DSA, of which 8 were type Ia, 3 were type Ib, 18 were type II, 6 were type III, 2 were type Ia combined with type III, 1 was type II combined with type III, and 1 was type Ib combined with type II. The sensitivity and specificity of CEUS in the detection of endoleaks were 92.3% and 98.3%, respectively. CEUS and CTA/DSA had similar diagnostic efficacy and good consistency in the detection and classification of endoleaks (Kappa value: 0.914, P<0.01). Conclusions: CEUS has high sensitivity and specificity in the detection and classification of endoleaks following EVAR, and its diagnostic efficacy is similar to that of CTA/DSA. In addition, US is safe, non-invasive and repeatable, and thus is worthy of extensive clinical application.

6.
Adv Sci (Weinh) ; : e2402349, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137939

RESUMO

Three novel asymmetric Ir(III) complexes have been rationally designed to optimize their emitting dipole orientations (EDO) and enhance light outcoupling in blue phosphorescent organic light-emitting diodes (OLEDs), thereby boosting their external quantum efficiency (EQE). Bulky electron-donating groups (EDGs), namely: carbazole (Cz), di-tert-butyl carbazole (tBuCz), and phenoxazine (Pxz) are incorporated into the tridentate dicarbene pincer chelate to induce high degree of packing anisotropy, simultaneously enhancing their photophysical properties. Angle-dependent photoluminescence (ADPL) measurements indicate increased horizontal transition dipole ratios of 0.89 and 0.90 for the Ir(III) complexes Cz-dfppy-CN and tBuCz-dfppy-CN, respectively. Analysis of the single crystal structure and density functional theory (DFT) calculation results revealed an inherent correlation between molecular aspect ratio and EDO. Utilizing the newly obtained emitters, the blue OLED devices demonstrated exceptional performance, achieving a maximum EQE of 30.7% at a Commission International de l'Eclairage (CIE) coordinate of (0.140, 0.148). Optical transfer matrix-based simulations confirmed a maximum outcoupling efficiency of 35% due to improved EDO. Finally, the tandem OLED and hyper-OLED devices exhibited a maximum EQE of 44.2% and 31.6%, respectively, together with good device stability. This rational molecular design provides straightforward guidelines to reach highly efficient and stable saturated blue emission.

7.
World J Gastrointest Oncol ; 16(6): 2380-2393, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994149

RESUMO

Hepatic artery infusion chemotherapy (HAIC) has good clinical efficacy in the treatment of advanced hepatocellular carcinoma (HCC); however, its efficacy varies. This review summarized the ability of various markers to predict the efficacy of HAIC and provided a reference for clinical applications. As of October 25, 2023, 51 articles have been retrieved based on keyword predictions and HAIC. Sixteen eligible articles were selected for inclusion in this study. Comprehensive literature analysis found that methods used to predict the efficacy of HAIC include serological testing, gene testing, and imaging testing. The above indicators and their combined forms showed excellent predictive effects in retrospective studies. This review summarized the strategies currently used to predict the efficacy of HAIC in middle and advanced HCC, analyzed each marker's ability to predict HAIC efficacy, and provided a reference for the clinical application of the prediction system.

8.
Immunotargets Ther ; 13: 343-348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978969

RESUMO

Unresectable recurrent lymph node metastasis of colorectal cancer (CRC) is considered as an incurable disease clinically and has a very poor prognosis. Here, we report a male KRAS wild-type CRC case with a huge abdominal lymph node metastasis (12 cm in diameter) after CRC surgery. After three intratumoral injections of oncolytic virus (H101) combined with four cycles of low-dose oral capecitabine, the size of the metastatic lymph node shrank remarkably in response to the anticancer drug and a complete response (CR) was achieved with progression-free survival (PFS) of 19 months. The main adverse reaction was mild fever, which was relieved after physical cooling. The patient is in a general good condition now without any relapse of abdominal lymph node for over a year. On this basis, we propose that the combination therapy of oncolytic virus and capecitabine could be a promising clinical therapeutic strategy for unresectable recurrent lymph node metastasis in CRC patients.

9.
Environ Res ; 261: 119707, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084507

RESUMO

Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.


Assuntos
Rizosfera , Salinidade , Plantas Tolerantes a Sal , Microbiologia do Solo , Solo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Ecossistema , Microbiota
10.
Angew Chem Int Ed Engl ; : e202412720, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082148

RESUMO

Thermally activated delayed fluorescence (TADF) emitters with a high horizontal orientation are highly essential for improving the external quantum efficiency (EQE) of organic light-emitting diodes; however, pivotal molecular design strategies to improve the horizontal orientation of solution processable TADF emitters are still scarce and challenging. Herein, a phenyl bridge is adopted to connect the double TADF units, and a dimerized TADF dendrimer, D4CzBNPh-SF, is successfully constructed. Compared to counterpart with single TADF unit, the proof-of-the-concept molecule not only exhibits an improved horizontal dipole ratio (78%) due to the π-delocalization-induced extended molecular conjugation, but also displays a faster reversed intersystem crossing rate constant (6.08×106 s-1) and a high photoluminescence quantum yield of 95% in neat film. Consequently, the non-doped solution-processed device with D4CzBNPh-SF as the emitter, achieves an ultra-high maximum EQE of 32.6%, which remains at 26.6% under a luminance of 1000 cd/m2. Furthermore, using D4CzBNPh-SF as a sensitizer, the TADF-sensitized fluorescence device exhibits a high maximum EQE of 30.7% at a luminance of 575 cd/m2 and a full width at half maximum of 36 nm.

11.
Adv Mater ; 36(38): e2406550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054732

RESUMO

A promising kind of ternary chiral co-assemblies with high PLQY, large dissymmetry factor (glum), and narrowband multi-resonance characteristics are achieved by codoped-thermal annealing treatments of achiral luminescent polymer F8BT, chiral inducers R/S-5011, and achiral FRET acceptor DBN-ICZ. The optimized co-assemblies (F8BT)0.9-(R/S-5011)0.1-(DBN-ICZ)0.005 display narrowband yellow emission with full-width half maximum (FWHM) of 37 nm, PLQY of 79%, and intense CPL signals with |glum| of up to 0.26. Meaningfully, solution-processed CP-OLEDs by using those ternary chiral co-assemblies as emitting layer are successfully fabricated, which display yellow circularly polarized electroluminescence (CPEL) with EQEmax of 4.6% and gEL of up to 0.16. The corresponding Q-factor could reach up to 7.36 × 10-3, which is the highest of all the reported CP-OLEDs. Moreover, the devices also exhibit excellent comprehensive device performance with low Von of 7.0 V, high Lmax of about 25 000 cd m-2, extremely low efficiency roll-off with EQE of 4.3% at 10 000 cd m-2, as well as narrowband EL with FWHM of only 39 nm. The proposed ternary co-assembly strategy in fabricating CP-OLED provides the possibility to achieve high comprehensive device performance such as balancing high EQE and large gEL value, as well as narrowband emission, high brightness and low efficiency roll-off simultaneously.

12.
ACS Appl Mater Interfaces ; 16(23): 30344-30354, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819945

RESUMO

The primary focus of photopolymerization research is to advance highly efficient visible photoinitiating systems (PISs) as alternatives to conventional ultraviolet (UV) photoinitiators. We developed four multiresonance emitters (BIC-pCz, BNO1, BO-DICz, and TPABO-DICz) to sensitize iodonium salt (Iod) and initiate free-radical and cationic photopolymerization under visible light for the first time. The TPABO-DICz/Iod system achieved a double-bond conversion of over 70% within just 4 s of exposure to green light (520 nm), while the BNO1/Iod system achieved a double-bond conversion exceeding 50% with 10 s of exposure to red light (630 nm). The photochemical properties were studied through thermodynamic research, steady-state photolysis, and electron spin resonance. Photolithography techniques were employed to fabricate photoluminescent films and micrometer-scale patterns utilizing the blue-emitting BIC-pCz dye, showcasing the potential of photolithography in the production of photoluminescent pixels. Additionally, the BIC-pCz/Iod and TPABO-DICz/Iod systems have been employed to rapidly fabricate photoluminescent polymer patterns using a digital-light-processing 3D printer with a low-intensity light (3.2 mW cm-2). These multiresonance emitters show exceptional photosensitizing effects and can act as fluorescent dyes in photoluminescent patterns, highlighting the potential of utilizing photopolymerization for OLED applications.

13.
Theranostics ; 14(7): 2675-2686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773981

RESUMO

Cyanine dyes are widely used organic probes for in vivo imaging due to their tunable fluorescence. They can form complexes with endogenous albumin, resulting in enhanced brightness and photostability. However, this binding is uncontrollable and irreversible, leading to considerable nonspecific background signals and unregulated circulation time. Methods: Here, we connect varying numbers of 4-(4-iodophenyl) butanoic acid (IP) as albumin-binding moieties (ABM) to the cyanine dye, enabling dynamic and controllable binding with albumin. Meanwhile, we provide a blocking method to completely release the dye from covalent capture with albumin, resulting in specific targeting fluorescence. Furthermore, we evaluate the pharmacokinetics and tumor targeting of the developed dyes. Results: The engineered dyes can dynamically and selectively bind with multiple albumins to change the in situ size of assemblies and circulation time, providing programmable regulation over the imaging time window. The nucleophilic substitution of meso-Cl with water-soluble amino acids or targeting peptides for IP-engineered dye further addresses the nonspecific signals caused by albumin, allowing for adjustable angiography time and efficient tumor targeting. Conclusion: This study rationalizes the binding modes of dyes and proteins, applicable to a wide range of near-infrared (NIR) dyes for improving their in vivo molecular imaging.


Assuntos
Albuminas , Corantes Fluorescentes , Imagem Óptica , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Albuminas/química , Albuminas/metabolismo , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem , Camundongos , Humanos , Carbocianinas/química , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
14.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604056

RESUMO

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Assuntos
Brassica , Dimetoato , Limite de Detecção , Polímeros Molecularmente Impressos , Dimetoato/análise , Brassica/química , Polímeros Molecularmente Impressos/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Nanopartículas de Magnetita/química , Extração em Fase Sólida/métodos , Contaminação de Alimentos/análise
15.
Nat Mater ; 23(4): 449-450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570637
16.
Acad Radiol ; 31(8): 3118-3130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38555183

RESUMO

PURPOSE: Ultrasound is the imaging modality of choice for preoperative diagnosis of lymph node metastasis (LNM) in thyroid cancer (TC), yet its efficacy remains suboptimal. As radiomics gains traction in tumor diagnosis, its integration with ultrasound for LNM differentiation in TC has emerged, but its diagnostic merit is debated. This study assesses the accuracy of ultrasound-integrated radiomics in preoperatively diagnosing LNM in TC. METHODS: Literatures were searched in PubMed, Embase, Cochrane, and Web of Science until July 11, 2023. Quality of the studies was assessed by the radiomics quality score (RQS). A meta-analysis was executed using a bivariate mixed effects model, with a subgroup analysis based on modeling variables (clinical features, radiomics features, or their combination). RESULTS: Among 27 articles (16,410 TC patients, 6356 with LNM), the average RQS was 16.5 (SD:5.47). Sensitivity of the models based on clinical features, radiomics features, and radiomics features plus clinical features were 0.64, 0.76 and 0.69. Specificities were 0.77, 0.78 and 0.82. SROC values were 0.76, 0.84 and 0.81. CONCLUSION: Ultrasound-based radiomics effectively evaluates LNM in TC preoperatively. Adding clinical features does not notably enhance the model's performance. Some radiomics studies showed high bias, possibly due to the absence of standard application guidelines.


Assuntos
Metástase Linfática , Neoplasias da Glândula Tireoide , Ultrassonografia , Humanos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Metástase Linfática/diagnóstico por imagem , Ultrassonografia/métodos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Sensibilidade e Especificidade , Radiômica
17.
IEEE Trans Vis Comput Graph ; 30(5): 2671-2681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437090

RESUMO

There is little research on how Virtual Reality (VR) applications can identify and respond meaningfully to users' emotional changes. In this paper, we investigate the impact of Context-Aware Empathic VR (CAEVR) on the emotional and cognitive aspects of user experience in VR. We developed a real-time emotion prediction model using electroencephalography (EEG), electrodermal activity (EDA), and heart rate variability (HRV) and used this in personalized and generalized models for emotion recognition. We then explored the application of this model in a context-aware empathic (CAE) virtual agent and an emotion-adaptive (EA) VR environment. We found a significant increase in positive emotions, cognitive load, and empathy toward the CAE agent, suggesting the potential of CAEVR environments to refine user-agent interactions. We identify lessons learned from this study and directions for future work.


Assuntos
Empatia , Realidade Virtual , Gráficos por Computador , Emoções/fisiologia , Conscientização
18.
Theranostics ; 14(5): 1860-1872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505608

RESUMO

Synthetic near-infrared-II (NIR-II) dyes are promising for deep tissue imaging, yet they are generally difficult to target a given biomolecule with high specificity. Furthermore, the interaction mechanism between albumin and cyanine molecules, which is usually regarded as uncertain "complexes" such as crosslinked nanoparticles, remains poorly understood. Methods: Here, we propose a new class of NIR-II fluorogenic dyes capable of site-specific albumin tagging for in situ albumin seeking/targeting or constructing high-performance cyanine@albumin probes. We further investigate the interaction mechanism between NIR-II fluorogenic dyes and albumin. Results: We identify CO-1080 as an optimal dye structure that produces a stable/bright NIR-II cyanine@albumin probe. CO-1080 exhibits maximum supramolecular binding affinity to albumin while catalyzing their covalent attachment. The probe shows exact binding sites located on Cys476 and Cys101, as identified by proteomic analysis and docking modeling. Conclusion: Our cyanine@albumin probe substantially improves the pharmacokinetics of its free dye counterpart, enabling high-performance NIR-II angiography and lymphography. Importantly, the site-specific labeling tags between NIR-II fluorogenic dyes and albumin occur under mild conditions, offering a specific and straightforward synthesis strategy for NIR-II fluorophores in the fields of targeting bioimaging and imaging-guided surgery.


Assuntos
Nanopartículas , Proteômica , Corantes Fluorescentes/química , Albuminas , Nanopartículas/química , Imagem Óptica/métodos
19.
Chem Sci ; 15(9): 3148-3154, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425532

RESUMO

Despite theoretical difficulties, we herein demonstrate an effective strategy for the inaugural synthesis of an orange-red multiple resonance (MR) emitter centered on a pyridine ring via stereo effects. Compared to conventional benzene-centered materials, the pyridine moiety in the novel MR material acts as a co-acceptor. This results in a significant spectral redshift and a narrower spectrum, as well as an improved photoluminescence quantum yield (PLQY) due to the formation of intramolecular hydrogen bonds. As envisioned, the proof-of-concept emitter Py-Cz-BN exhibits bright orange-red emission peaking at 586 nm with a small full width at half maximum (FWHM) of 0.14 eV (40 nm), exceeding both the wavelength and FWHM achieved with benzene-centered BBCz-Y. Benefiting from high PLQYs (>92%) and suppressed chromophore interactions, the optimized organic light-emitting diodes achieved high maximum external quantum efficiencies of 25.3-29.6%, identical small FWHMs of 0.18 eV (54 nm), and long lifetimes over a wide range of dopant concentrations (1-15 wt%). The performance described above demonstrates the effectiveness of this molecular design and synthesis strategy in constructing high performance long-wavelength MR emitters.

20.
Anal Chim Acta ; 1289: 342060, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245195

RESUMO

Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Organelas/química , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Biomarcadores/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...