Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Talanta ; 275: 126111, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657362

RESUMO

Sensitive, accurate, and straightforward biosensors are pivotal in the battle against Alzheimer's disease, particularly in light of the escalating patient population. These biosensors enable early adjunctive diagnosis, thereby facilitating prompt intervention, alleviating socioeconomic burdens, and preserving individual well-being. In this study, we introduce the development of a highly sensitive add-drop dual-microring resonant microfluidic sensing chip boasting a sensitivity of 188.11 nm/RIU, marking a significant 20.7% enhancement over single microring systems. Leveraging ultra-thin Parylene C for streamlined antibody immobilization and non-destructive removal, this platform facilitates the precise quantification of the Alzheimer's disease biomarker Aß42. Employing an immune sensing strategy that amplifies and captures antigen signals using Au-labeled antibodies, we achieve an exceptional limit of detection of 9.02 pg/mL. The designed microring-based microfluidic biosensor chip exhibits outstanding specificity and sensitivity for Aß42 in serum samples, offering a promising avenue for the early adjunctive diagnosis of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Técnicas Biossensoriais , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/sangue , Técnicas Biossensoriais/métodos , Humanos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Limite de Detecção , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Ouro/química
2.
Foods ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38472770

RESUMO

Postharvest ripening is correlated to the quality and shelf life of European pear fruit. In this study, the effects of peppermint extract on fruit phenotype, related physiological activities, and aroma components during postharvest ripening of the European pear variety 'Packham's Triumph' were examined. Fruit treated with 2.0 g L-1 peppermint extract for 12 h showed delayed softening by 4 d compared with that of the untreated control group. The peak values of ethylene and respiratory rate in fruit were reduced to a certain extent after peppermint extract treatment; however, the peppermint extract did not delay the occurrence of the respiratory climacteric peak. Peppermint extract treatment also did not significantly increase the content of the characteristic peppermint aroma in pear fruit. Further, widely targeted metabolome analysis revealed 298 significantly different metabolites, with flavonoids (40%) and lipid compounds (15%) accounting for the highest proportion on the first day after treatment. The Kyoto Encyclopedia of Genes and Genomes pathway result showed significant enrichment in the metabolic pathways of biosynthesis of flavonoid, isoflavonoid, flavone and flavonol, linoleic acid, and alpha-linolenic acid metabolism following peppermint extract treatment. The combined analysis of transcriptome and metabolome data showed significant enrichment in linoleic acid metabolism and alpha-linolenic acid metabolism on the first, third, and fifth days after peppermint extract treatment. This study indicates that peppermint extract mainly affects the pear fruit softening process in the early stage after treatment.

3.
Front Bioeng Biotechnol ; 12: 1375277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515620

RESUMO

Introduction: Stroke is the second leading cause of death globally and a primary factor contributing to disability. Unilateral limb motor impairment caused by stroke is the most common scenario. The bilateral movement pattern plays a crucial role in assisting stroke survivors on the affected side to relearn lost skills. However, motion compensation often lead to decreased coordination between the limbs on both sides. Furthermore, muscle fatigue resulting from imbalanced force exertion on both sides of the limbs can also impact the rehabilitation outcomes. Method: In this study, an assessment method based on muscle synergy indicators was proposed to objectively quantify the impact of motion compensation issues on rehabilitation outcomes. Muscle synergy describes the body's neuromuscular control mechanism, representing the coordinated activation of multiple muscles during movement. 8 post-stroke hemiplegia patients and 8 healthy subjects participated in this study. During hand-cycling tasks with different resistance levels, surface electromyography signals were synchronously collected from these participants before and after fatigue. Additionally, a simulated compensation experiment was set up for healthy participants to mimic various hemiparetic states observed in patients. Results and discussion: Synergy symmetry and synergy fusion were chosen as potential indicators for assessing motion compensation. The experimental results indicate significant differences in synergy symmetry and fusion levels between the healthy control group and the patient group (p ≤ 0.05), as well as between the healthy control group and the compensation group. Moreover, the analysis across different resistance levels showed no significant variations in the assessed indicators (p > 0.05), suggesting the utility of synergy symmetry and fusion indicators for the quantitative evaluation of compensation behaviors. Although muscle fatigue did not significantly alter the symmetry and fusion levels of bilateral synergies (p > 0.05), it did reduce the synergy repeatability across adjacent movement cycles, compromising movement stability and hindering patient recovery. Based on synergy symmetry and fusion indicators, the degree of bilateral motion compensation in patients can be quantitatively assessed, providing personalized recommendations for rehabilitation training and enhancing its effectiveness.

4.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38544192

RESUMO

Silicon photonic-based refractive index sensors are of great value in the detection of gases, biological and chemical substances. Among them, microring resonators are the most promising due to their compact size and narrow Lorentzian-shaped spectrum. The electric field in a subwavelength grating waveguide (SWG) is essentially confined in the low-refractive index dielectric, favoring enhanced analyte-photon interactions, which represents higher sensitivity. However, it is very challenging to further significantly improve the sensitivity of SWG ring resonator refractive index sensors. Here, a hybrid waveguide blocks double slot subwavelength grating microring resonator (HDSSWG-MRR) refractive index sensor operating in a water refractive index environment is proposed. By designing a new waveguide structure, a sensitivity of up to 1005 nm/RIU has been achieved, which is 182 nm/RIU higher than the currently highest sensitivity silicon photonic micro ring refractive index sensor. Meanwhile, utilizing a unique waveguide structure, a Q of 22,429 was achieved and a low limit of detection of 6.86 × 10-5 RIU was calculated.

5.
Plant J ; 117(5): 1392-1412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044792

RESUMO

The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.


Assuntos
Aldose-Cetose Isomerases , Pyrus , Açúcares , Açúcares/metabolismo , Glucose/metabolismo , Pyrus/metabolismo , Sacarose/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
6.
Plant Biotechnol J ; 22(5): 1177-1197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38041554

RESUMO

Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.


Assuntos
Arabidopsis , Pyrus , Arabidopsis/metabolismo , Pyrus/genética , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Germinação/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Transdução de Sinais/genética , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Opt Express ; 31(21): 34300-34312, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859190

RESUMO

We employ a full-wave theory to systematically investigate two types of spin-orbit interactions and their topological phase transitions for various light beams (e.g., Laguerre-Gaussian, Bessel, and Bessel-Gaussian beams) at optical interfaces, and explore the influence of beam parameters on the spin-Hall shift. It is demonstrated that at small-angle incidence, the beam profile and spin-Hall shift are significantly affected by the beam parameters (e.g., waist radius, radial index, azimuthal index, and cone angle), whereas at large-angle incidence, only the azimuthal index has a salient influence on them. We further find that the Bessel beam and the Gaussian-modulated ones (i.e., Laguerre-Gaussian and Bessel-Gaussian beams) have similar topological phase transition phenomena but different shifts. Quantitative dependences of beam parameters, such as waist radius, radial index, azimuthal index, and cone angle, on the shift are also presented. Our findings offer alternative degrees of freedom in controlling the topological phase transitions of light, and suggest a valuable insight for exploring the applications of SOIs of diverse light fields.

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 663-675, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37666756

RESUMO

Tremor is an involuntary and repetitive swinging movement of limb, which can be regarded as a periodic disturbance in tremor suppression system based on functional electrical stimulation (FES). Therefore, using repetitive controller to adjust the level and timing of FES applied to the corresponding muscles, so as to generate the muscle torque opposite to the tremor motion, is a feasible means of tremor suppression. At present, most repetitive control systems based on FES assume that tremor is a fixed single frequency signal, but in fact, tremor may be a multi-frequency signal and the tremor frequency also varies with time. In this paper, the tremor data of intention tremor patients are analyzed from the perspective of frequency, and an adaptive repetitive controller with internal model switching is proposed to suppress tremor signals with different frequencies. Simulation and experimental results show that the proposed adaptive repetitive controller based on parallel multiple internal models and series high-order internal model switching can suppress tremor by up to 84.98% on average, which is a significant improvement compared to the traditional single internal model repetitive controller and filter based feedback controller. Therefore, the adaptive repetitive control method based on FES proposed in this paper can effectively address the issue of wrist intention tremor in patients, and can offer valuable technical support for the rehabilitation of patients with subsequent motor dysfunction.


Assuntos
Tremor , Punho , Humanos , Tremor/terapia , Movimento , Simulação por Computador , Estimulação Elétrica
9.
Opt Express ; 31(14): 23621-23630, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475442

RESUMO

The topological phase transitions (TPT) of light refers to a topological evolution from one type of spin-orbit interaction to another, which has been recently found in beam scattering at optical interfaces and propagation in uniaxial crystals. In this work, the focusing of off-axis and partially masked circular-polarization Gaussian beams are investigated by using of a full-wave theory. Moreover, two different types of spin-orbit interactions (i.e., spin-dependent vortex generation and photonic spin-Hall effect) in the focusing system are unified from the perspective of TPT. It is demonstrated that as the off-axis distance or the masked area increases, a TPT phenomenon in the focused optical field takes place, evolving from the spin-dependent vortex generation to the spin-Hall shift of the beam centroids. The intrinsic mechanism is attributed to the cylindrical symmetry-breaking of the system. This symmetry-breaking induced TPT based on the method of vortex mode decomposition is further examined. The main difference between the TPT phenomenon observed here and that trigged by oblique incidence at optical interfaces or oblique propagation in uniaxial crystals is also uncovered. Our findings provide fruitful insights for understanding the spin-orbit interactions in optics, providing an opportunity for unifying the TPT phenomena in various spin-orbit photonics systems.

10.
Polymers (Basel) ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447458

RESUMO

In recent years, with the development of the nanomaterials discipline, many new pesticide drug-carrying systems-such as pesticide nano-metal particles, nano-metal oxides, and other drug-carrying materials-had been developed and applied to pesticide formulations. Although these new drug-loading systems are relatively friendly to the environment, the direct exposure of many metal nanoparticles to the environment will inevitably lead to potential effects. In response to these problems, organic nanomaterials have been rapidly developed due to their high-quality biodegradation and biocompatibility. Most of these organic nanomaterials were mainly polysaccharide materials, such as chitosan, carboxymethyl chitosan, sodium alginate, ß-cyclodextrin, cellulose, starch, guar gum, etc. Some of these materials could be used to carry inorganic materials to develop a temperature- or pH-sensitive pesticide drug delivery system. Herein, the pesticide drug-carrying system developed based on polysaccharide materials, such as chitosan, was referred to as the pesticide polymer drug-carrying system based on polysaccharide materials. This kind of drug-loading system could be used to protect the pesticide molecules from harsh environments, such as pH, light, temperature, etc., and was used to develop the function of a sustained release, targeted release of pesticides in the intestine of insects, and achieve the goal of precise application, reduction, and efficiency of pesticides. In this review, the recent progress in the field of polysaccharide-based polymer drug delivery systems for pesticides has been discussed, and suggestions for future development were proposed based on the current situation.

11.
Acta Neurochir (Wien) ; 165(8): 2237-2247, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37382689

RESUMO

AIM: Controversy remains high over the superiority of advanced machine learning (ML) algorithms to conventional logistic regression (LR) in the prediction of prognosis after traumatic brain injury (TBI). This study aimed to compare the performance of ML and LR models in predicting in-hospital prognosis after TBI. METHOD: In a single-center retrospective cohort of adult patients hospitalized for moderate-to-severe TBI (Glasgow coma score ≤12) in our hospital from 2011 to 2020, LR and three ML algorithms (XGboost, lightGBM, and FT-transformer) were run to build prediction models for in-hospital mortality and the Glasgow Outcome Scale (GOS) functional outcomes using either all 19 clinical and laboratory features or the 10 non-laboratory ones collected at admission to the neurological intensive care unit. The Shapley (SHAP) value was used for model interpretation. RESULT: In total, 482 patients had an in-hospital mortality rate of 11.0%. A total of 23.0% of the patients had good functional scores (GOS ≥ 4) at discharge. All ML models performed better than the LR model in predicting in-hospital prognosis after TBI, among which the lightGBM model showed the best performance: When predicting mortality, the lightGBM model yielded an area under the curve (AUC) of 0.953 using all 19 features (the LR model: 0.813) and an AUC of 0.935 using 10 non-laboratory features (the LR model: 0.803); when predicting GOS functional outcomes, it yielded an AUC of 0.913 using all 19 features (the LR model: 0.832) and an AUC of 0.889 using non-laboratory data (the LR model: 0.818). The SHAP method identified key contributors to explain the lightGBM models. Finally, the integration of the lightGBM models with different prediction purposes was found to provide refined prognostic information, particularly for patients who survived moderate-to-severe TBI. CONCLUSION: The study supported the superiority of ML to LR in predicting prognosis after moderate-to-severe TBI and highlighted its potential use for clinical application.


Assuntos
Lesões Encefálicas Traumáticas , População do Leste Asiático , Adulto , Humanos , Algoritmos , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Hospitais , Aprendizado de Máquina , Prognóstico , Estudos Retrospectivos , Hospitalização
12.
Pest Manag Sci ; 79(10): 4034-4047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287215

RESUMO

BACKGROUND: Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS: Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION: Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.


Assuntos
Formigas , Hemípteros , Animais , Hibridização in Situ Fluorescente , Hemípteros/fisiologia , Herbivoria , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Antibacterianos/farmacologia , Formigas/metabolismo , Bactérias , Enterobacteriaceae/metabolismo
13.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367376

RESUMO

The use of insect-specific odorants to control the behavior of insects has always been a hot spot in research on "green" control strategies of insects. However, it is generally time-consuming and laborious to explore insect-specific odorants with traditional reverse chemical ecology methods. Here, an insect odorant receptor (OR) and ligand database website (iORandLigandDB) was developed for the specific exploration of insect-specific odorants by using deep learning algorithms. The website provides a range of specific odorants before molecular biology experiments as well as the properties of ORs in closely related insects. At present, the existing three-dimensional structures of ORs in insects and the docking data with related odorants can be retrieved from the database and further analyzed.

14.
Plant Sci ; 334: 111773, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328074

RESUMO

Various pear plant cultivars exhibit diverse abilities to resist pear black spot disease (BSD), while the precise molecular mechanisms of resistance against pear BSD remain unclear. This study proposed a profound expression of a WRKY gene, namely PbrWRKY70, derived from Pyrus bretschneideri Rehd, within a BSD-resistant pear cultivar. Comparative analysis against the wild-type revealed that the overexpression of PbrWRKY70 engendered augmented BSD resistance of transgenic Arabidopsis thaliana and pear calli. Notably, the transgenic plants exhibited higher activities of superoxide dismutase and peroxidase, along with an elevated capacity to counteract superoxide anions via increased anti-O2-. Additionally, these plants displayed diminished lesion diameter, as well as reduced levels of hydrogen peroxide, malondialdehyde and 1-aminocyclopropane-1-carboxylic acid (ACC) contents. We subsequently demonstrated that PbrWRKY70 selectively bound to the promoter region of ethylene-responsive transcription factor 1B-2 (PbrERF1B-2), a potential negative regulator of ACC, thereby downregulating the expression of ACC synthase gene (PbrACS3). Consequently, we confirmed that PbrWRKY70 could enhance pear resistance against BSD by reducing ethylene production via modulation of the PbrERF1B-2-PbrACS3 pathway. This study established the pivotal relationship among PbrWRKY70, ethylene synthesis and pear BSD resistance, fostering the development of novel BSD-resistant cultivars. Furthermore, this breakthrough holds the potential to enhance pear fruit yield and optimize storage and processing during the later stages of fruit maturation.


Assuntos
Pyrus , Pyrus/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas
15.
PLoS One ; 18(5): e0286257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228085

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high prevalence worldwide, with a significant proportion of patients progressing into non-alcoholic steatohepatitis (NASH) and further into cirrhosis and hepatocellular carcinoma (HCC). Most of the current animal models of NASH have limitations, such as incompatibility with human pathogenesis characteristics or long induction periods, which severely limit the development of new drugs and preclinical studies for NASH. We investigated the progression of NASH and fibrosis, as well as metabolic indicators, at different time points in aged mice induced by the Gubra Amylin NASH (GAN) diet, a high-fat, high-sugar, high-cholesterol diet, and attempted to establish a rapid and useful mouse model of NASH. Young and aged C57BL/6 mice were induced on a normal chow or GAN diet for 12 and 21 weeks, respectively. After 12 weeks of induction, aged mice developed NASH, including hepatic steatosis, lobular inflammation and hepatic ballooning, and the phenotype was more severe compared with young mice. After 21 weeks of induction, aged mice developed hepatic fibrosis, which greatly shortened the induction time compared with young mice. Furthermore, analysis of immune cell infiltration in the liver by flow cytometry elucidated the changes of multiple immune cells during the pathogenesis of NASH. These findings suggest that aged mice may develop NASH and fibrosis more rapidly under GAN diet induction, which may significantly shorten the period for preclinical studies of NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Idoso , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos
16.
Sci Total Environ ; 861: 160610, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460117

RESUMO

Thiacloprid is a new chlorinated nicotinoid insecticide against stinging-oral pests, such as aphids. It is less toxic to bees but more toxic to earthworms. In this study, a pH- and amylase-responsive MOF (ZIF-8) was constructed for site-specific delivery of thiacloprid to control pea aphids and more safety for earthworms. Thiacloprid from α-cyclodextrin@Thiacloprid@ZIF-8 (α-CD@T@ZIF-8) could be released quickly in pea aphids, which was ascribed to disintegration of ZIF-8 at low pH values in pea aphid intestines and degradation of α-CD under the action of α-amylase. The release results showed a significant pH dependence of α-CD@T@ZIF-8, with an approximately 65 % release amount at pH = 7 and a 95 % release amount at pH = 5 for 7 d. The results of the pot experiment and biosafety showed that for α-CD@T@ZIF-8, 88 % pea aphids could be killed compared with 32 % aphids for commercially available formulation on the 7th day after application. Meanwhile the LC50 of thiacloprid OD was 0.034 µg/cm2 and the LC50 of α-CD@T@ZIF-8 was 0.564 µg/cm2 on earthworms, and it was more safety for pea and lower acute toxicity and enrichment for the earthworms. α-CD@T@ZIF-8 could be used for intelligently controlled release of other insecticides against aphids.


Assuntos
Afídeos , Inseticidas , Oligoquetos , Animais , Afídeos/metabolismo , Pisum sativum , Oligoquetos/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Concentração de Íons de Hidrogênio
17.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(6): 662-670, 2023 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597031

RESUMO

OBJECTIVES: This study aims to investigate the effect of morinda officinalis polysaccharides (MOP) in inflammatory microenvironment on the expression of silent information regulator sirtuin 1 (SIRT1) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in periodontal ligament cells. METHODS: Thirty rats were randomly divided into control group (n=6) and model group (n=24). The model group used orthodontic wire ligation to establish periodontitis, and six rats from each group were killed after 3 weeks. The successful modeling was confirmed by Micro-CT. The remaining rats in the model group were randomly divided into natural recovery group, normal saline (NS) group, and MOP group. In the MOP group, MOP [200 mg/(kg·3d), 50 µL for 4 weeks] was injected into the palatal side of the left maxillary first molar of the rats, while the NS group was injected with equal volume of NS. The natural recovery group did not undergo any treatment. The left maxilla tissues of the rats were collected, and pathological changes in perio-dontal ligament cells were observed by hematoxylin-eosin (HE) staining. The expression of SIRT1 and NLRP3 was detected by immunohistochemistry. Cultivate periodontal ligament fibroblasts in vitro and detect the effect of MOP on cell activity using CCK-8. The 4th generation cells were divided into control group, inflammation group (10 µg/mL lipopolysaccharide), and experimental group (5 µmol/L MOP, 5 µmol/L MOP+10 µg/mL lipopolysaccharide). The expression of SIRT1 and NLRP3 was detected by quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot analyses. The acetylation of NLRP3 and the contents of interleukin (IL)-1ß and IL-18 were detected by immunoprecipitation and enzyme-linked immunosorbent assay, respectively. Statistical analysis of data was conducted using Prism 9.0 software. RESULTS: In the vivo experiments, the expression of NLRP3 and SIRT1 in the MOP group decreased significantly compared with that in the natural recovery group and NS group, while the expression of SIRT1 increased (P<0.05) and inflammatory cell infiltration decreased. In the in vitro experiments, the expression of NLRP3 mRNA and protein in the inflammation group increased (P<0.05), while the expression of SIRT1 significantly decreased (P<0.01); MOP upregulated the expression of SIRT1 in inflammatory cells (P<0.05), reduced the expression of NLRP3 and its acetylation level significantly (P<0.05), suppressed the content of IL-1ß and IL-18 in the supernatant (P<0.01). CONCLUSIONS: The SIRT1 expression decreased, and that of NLRP3 expression increased in inflammatory periodontal ligament cells. MOP intervention promoted SIRT1 expression, resulting in the inhibition of NLRP3. Meanwhile, the acetylation level of NLRP3 reduced through deacetylation, leading to the decreased activity of NLRP3. Thus, MOP acted as inflammatory suppressor.


Assuntos
Morinda , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Interleucina-18/metabolismo , Morinda/metabolismo , Proteínas NLR , Lipopolissacarídeos , Ligamento Periodontal/metabolismo , Domínios Proteicos , Inflamação
18.
Opt Express ; 30(24): 43718-43727, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523064

RESUMO

The optical spin-orbit interaction (SOI) caused by momentum-dependent Pancharatnam-Berry phase (PB) provides new opportunities in the development of spin-optical devices, but the relatively low conversion efficiency limits its application. Here, through rigorous full-wave analyses on it in a parity-time (PT) symmetric system with thickness less than a wavelength, we find that the conversion efficiency of the SOI can be enhanced in both transmission and reflection in a wide range of incidence angles. When the parameters of the PT symmetric system meet the requirement of coherent perfect absorbers-laser mode, the effective anisotropy between the TM and TE components (e.g., a difference of their Fresnel coefficients) within the beam will be amplified dramatically, which results in significantly enhanced conversion efficiency of SOIs (up to 106). These findings offer an effective way to modulate the SOIs with an ultra-thin PT symmetric system, and may exhibit applications in spin-orbit optical devices.

19.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558335

RESUMO

Berberine (Ber) is easy to synthesize and has a variety of biological and pharmacological activities. At present, the existing studies on berberine have focused predominantly on its antibacterial activity; its herbicidal activity is rarely reported. In addition, there are a number of preparations of berberine, which are not enough to solve its shortcomings of low solubility and biological activity and the difficult storage of berberine. Here, berberine was combined with carbon dots to obtain carbon dots-berberine (CDs-Ber) nano formulation. The fluorescence quenching results showed that the CDs-Ber nano drug delivery system was successfully constructed, and the fluorescence quenching mechanism of the two was static quenching. The bioassay results showed that CDs had no adverse effects on the growth of barnyard grass (Echinochloa crus-galli) and redroot pigweed (Amaranthus retroflexus), and had high biocompatibility. Berberine and CDs-Ber predominantly affected the root growth of barnyard grass and redroot pigweed and could enhance the growth inhibition effect on weeds, to some extent. The results of the protective enzyme system showed that both berberine and CDs-Ber could increase the activities of Superoxide dismutase (SOD), Peroxidase (POD), and Catalase (CAT) in barnyard grass, and CDs-Ber had a stronger stress effect on barnyard grass than berberine. The determination of the number of bacterial communities in the soil after the berberine and CDs-Ber treatments showed that there was no significant difference in the effects of the two, indicating that CDs-Ber would not have more negative impacts on the environment. The CDs-Ber nano formulation improved the biological activity of berberine, enhanced the herbicidal effect, and was relatively safe for soil colonies.

20.
Planta ; 257(1): 5, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434152

RESUMO

MAIN CONCLUSION: Identification of MAPKKK genes in pear and functional characterization of PbrMAPKKK82 in response to pear black spot. Mitogen-activated protein kinase kinase kinase (MAPKKK) is located upstream of the MAPK cascade pathway. This region senses extracellular stimuli via the signaling molecule or by themselves and is activated by phosphorylation. In this study, we identified 108 PbrMAPKKK genes from the pear genome. The genes were divided into three subfamilies and contained the conserved domain. Except for chromosome 7, there were 93 PbrMAPKKK genes randomly distributed on 16 out of the 17 chromosomes, while 15 PbrMAPKKK genes were detected on unknown chromosomes. They largely originated from whole-genome duplication (WGD) and dispersed events. In the expression analysis of PbrMAPKKK genes in seven pear tissue types by using a database, 20 PbrMAPKKK genes were selected to verify the expression associated with different resistance in two varieties by quantitative real-time PCR (qRT-PCR). The results showed that PbrMAPKKK12, PbrMAPKKK13, PbrMAPKKK53, PbrMAPKKK60, PbrMAPKKK65, PbrMAPKKK82, PbrMAPKKK83, and PbrMAPKKK96 were correlated with black spot resistance. PbrMAPKKK3, PbrMAPKKK9, PbrMAPKKK11, PbrMAPKKK34, PbrMAPKKK80, PbrMAPKKK81, PbrMAPKKK99, and PbrMAPKKK100 were correlated with black spot susceptibility, while the PbrMAPKKK gene positively responded to the life process of pear resistance to black spot. Furthermore, virus-induced gene silencing (VIGS) indicated that the PbrMAPKKK82 gene enhanced resistance to pear black spot disease.


Assuntos
Pyrus , Pyrus/genética , MAP Quinase Quinase Quinases/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...