Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Front Microbiol ; 15: 1407324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933024

RESUMO

Background: Some recent observational studies have shown that gut microbiota composition is associated with puerperal sepsis (PS) and no causal effect have been attributed to this. The aim of this study was to determine a causal association between gut microbiota and PS by using a two-sample Mendelian randomization (MR) analysis. Methods: This study performed MR analysis on the publicly accessible genome-wide association study (GWAS) summary level data in order to explore the causal effects between gut microbiota and PS. Gut microbiota GWAS (n = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for PS were obtained from the UK Biobank (PS, 3,940 cases; controls, 202,267 cases). Identification of single nucleotide polymorphisms associated with each feature were identified based on a significance threshold of p < 1.0 × 10-5. The inverse variance weighted (IVW) parameter was used as the primary method for MR and it was supplemented by other methods. Additionally, a set of sensitivity analytical methods, including the MR-Egger intercept, Mendelian randomized polymorphism residual and outlier, Cochran's Q and the leave-one-out tests were carried out to assess the robustness of our findings. Results: Our study found 3 species of gut microbiota, Lachnospiraceae FCS020, Lachnospiraceae NK4A136, and Ruminococcaceae NK4A214, to be associated with PS. The IVW method indicated an approximately 19% decreased risk of PS per standard deviation increase with Lachnospiraceae FCS020 (OR = 0.81; 95% CI 0.66-1.00, p = 0.047). A similar trend was also found with Lachnospiraceae NK4A136 (OR = 0.80; 95% CI 0.66-0.97, p = 0.024). However, Ruminococcaceae NK4A214 was positively associated with the risk of PS (OR = 1.33, 95% CI: 1.07-1.67, p = 0.011). Conclusion: This two-sample MR study firstly found suggestive evidence of beneficial and detrimental causal associations of gut microbiota on the risk of PS. This may provide valuable insights into the pathogenesis of microbiota-mediated PS and potential strategies for its prevention and treatment.

2.
Zool Res ; 45(3): 535-550, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747058

RESUMO

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Assuntos
Citoesqueleto de Actina , Caderinas , Espinhas Dendríticas , Protocaderinas , Quinases Associadas a rho , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Regulação da Expressão Gênica , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Protocaderinas/genética , Protocaderinas/metabolismo
3.
Elife ; 132024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619103

RESUMO

O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.


Newly synthesized proteins often receive further chemical modifications that change their structure and role in the cell. O-GlcNAcylation, for instance, consists in a certain type of sugar molecule being added onto dedicated protein segments. It is required for the central nervous system to develop and work properly; in fact, several neurological disorders such as Alzheimer's, Parkinson's or Huntington's disease are linked to disruptions in O-GlcNAcylation. However, scientists are currently lacking approaches that would allow them to reliably identify which proteins require O-GlcNAcylation in specific regions of the brain to ensure proper cognitive health. To address this gap, Yu et al. developed a profiling tool that allowed them to probe O-GlcNAcylation protein targets in different tissues of fruit flies. Their approach relies on genetically manipulating the animals so that a certain brain area overproduces two enzymes that work in tandem; the first binds specifically to O-GlcNAcylated proteins, which allows the second to add a small 'biotin' tag to them. Tagged proteins can then be captured and identified. Using this tool helped Yu et al. map out which proteins go through O-GlcNAcylation in various brain regions. This revealed, for example, that in the mushroom body ­ the 'learning center' of the fly brain ­ O-GlcNAcylation occurred predominantly in the protein-building machinery. To investigate the role of O-GlcNAcylation in protein synthesis and learning, Yu et al. used an approach that allowed them to decrease the levels of O-GlcNAcylation in the mushroom body. This resulted in reduced local protein production and the flies performing poorly in olfactory learning tasks. However, artificially increasing protein synthesis reversed these deficits. Overall, the work by Yu et al. provides a useful tool for studying the tissue-specific effects of O-GlcNAcylation in fruit flies, and its role in learning. Further studies should explore how this process may be linked to cognitive function by altering protein synthesis in the brain.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Encéfalo , Cognição , Processamento de Proteína Pós-Traducional
4.
Heliyon ; 10(5): e25572, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434379

RESUMO

Background: Dilated cardiomyopathy (DCM) is widely recognized as a significant contributor to heart failure. Nevertheless, the absence of pharmaceutical interventions capable of reversing disease progression and improving prognosis underscores the imperative for additional research in this area. Methods: First, we identified and evaluated three gene sets, namely "SC-DCM", "EP-DCM" and "Drug", using big data and multiple bioinformatics analysis methods. Accordingly, drug-treatable ("Hub") genes in DCM were identified. Following this, four microarray expression profile datasets were employed to authenticate the expression levels and discriminatory efficacy of "Hub" genes. Additionally, mendelian randomization analysis was conducted to ascertain the causal association between the "Hub genes" and heart failure. Finally, the "DGIdb" was applied to identify "Hub" genes-targeted drugs. The "ssGSEA" algorithm assessed the level of immune cell infiltration in DCM. Results: Enrichment analysis showed that the "SC-DCM" and "EP-DCM" gene sets were closely associated with DCM. PIK3R1 and ERBB2 were identified as drug-treatable genes in DCM. Additional analysis using MR supported a causal relationship between ERBB2 and heart failure, but not PIK3R1. Moreover, PIK3R1 was positively correlated with immune activation, while ERBB2 was negatively correlated. We found that everolimus was a pharmacological inhibitor for both PIK3R1 and ERBB2. However, no pharmacological agonist was found for ERBB2. Conclusion: PIK3R1 and ERBB2 are drug-treatable genes in DCM. ERBB2 has a causal effect on heart failure, and its normal expression may play a role in preventing the progression of DCM to heart failure. In addition, there is a cross-expression of PIK3R1 and ERBB2 genes in both DCM and tumors. The adaptive immune system and PIK3R1 may be involved in DCM disease progression, while ERBB2 exerts a protective effect against DCM.

5.
J Mol Cell Biol ; 15(7)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407287

RESUMO

Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Radiação Ionizante , DNA
6.
Mol Neurodegener ; 18(1): 94, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041169

RESUMO

Parkinson's disease (PD), one of the most devastating neurodegenerative brain disorders, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) and deposits of α-synuclein aggregates. Currently, pharmacological interventions for PD remain inadequate. The cell necroptosis executor protein MLKL (Mixed-lineage kinase domain-like) is involved in various diseases, including inflammatory bowel disease and neurodegenerative diseases; however, its precise role in PD remains unclear. Here, we investigated the neuroprotective role of MLKL inhibition or ablation against primary neuronal cells and human iPSC-derived midbrain organoids induced by toxic α-Synuclein preformed fibrils (PFFs). Using a mouse model (Tg-Mlkl-/-) generated by crossbreeding the SNCA A53T synuclein transgenic mice with MLKL knockout (KO)mice, we assessed the impact of MLKL deficiency on the progression of Parkinsonian traits. Our findings demonstrate that Tg-Mlkl-/- mice exhibited a significant improvement in motor symptoms and reduced phosphorylated α-synuclein expression compared to the classic A53T transgenic mice. Furthermore, MLKL deficiency alleviated tyrosine hydroxylase (TH)-positive neuron loss and attenuated neuroinflammation by inhibiting the activation of microglia and astrocytes. Single-cell RNA-seq (scRNA-seq) analysis of the SN of Tg-Mlkl-/- mice revealed a unique cell type-specific transcriptome profile, including downregulated prostaglandin D synthase (PTGDS) expression, indicating reduced microglial cells and dampened neuron death. Thus, MLKL represents a critical therapeutic target for reducing neuroinflammation and preventing motor deficits in PD.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Substância Negra
7.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571558

RESUMO

Blockchain technology is a decentralized ledger that allows the development of applications without the need for a trusted third party. As service-oriented computing continues to evolve, the concept of Blockchain as a Service (BaaS) has emerged, providing a simplified approach to building blockchain-based applications. The growing demand for blockchain services has resulted in numerous options with overlapping functionalities, making it difficult to select the most reliable ones for users. Choosing the best-trusted blockchain peers is a challenging task due to the sparsity of data caused by the multitude of available options. To address the aforementioned issues, we propose a novel collaborative filtering-based matrix completion model called Graph Attention Collaborative Filtering (GATCF), which leverages both graph attention and collaborative filtering techniques to recover the missing values in the data matrix effectively. By incorporating graph attention into the matrix completion process, GATCF can effectively capture the underlying dependencies and interactions between users or peers, and thus mitigate the data sparsity scenarios. We conduct extensive experiments on a large-scale dataset to assess our performance. Results show that our proposed method achieves higher recovery accuracy.

8.
J Genet Genomics ; 50(12): 948-959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37286164

RESUMO

Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.


Assuntos
Drosophila , Heterocromatina , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Heterocromatina/genética , Processamento de Proteína Pós-Traducional , Homeostase , Desenvolvimento Embrionário/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
9.
NPJ Parkinsons Dis ; 9(1): 22, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759515

RESUMO

Genome-wide association studies (GWASs) have identified numerous susceptibility loci for Parkinson's disease (PD), but its genetic architecture remains underexplored in populations of non-European ancestry. To identify genetic variants associated with PD in the Chinese population, we performed a GWAS using whole-genome sequencing (WGS) in 1,972 cases and 2,478 controls, and a replication study in a total of 8209 cases and 9454 controls. We identified one new risk variant rs61204179 (Pcombined = 1.47 × 10-9) with low allele frequency, four previously reported risk variants (NUCKS1/RAB29-rs11557080, SNCA-rs356182, FYN-rs997368, and VPS13C-rs2251086), as well as three risk variants in LRRK2 coding region (A419V, R1628P, and G2385R) with genome-wide significance (P < 5 × 10-8) for PD in Chinese population. Moreover, of the reported genome-wide significant risk variants found mostly in European ancestry populations, the correlation coefficient (rb) of effect size accounting for sampling errors was 0.91 between datasets and 63.6% attained P < 0.05 in Chinese population. Accordingly, we estimated a heritability of 0.14-0.18 for PD, and a moderate genetic correlation between European ancestry and Chinese populations (rg = 0.47, se = 0.21). Polygenic risk score (PRS) analysis revealed that individuals with PRS values in the highest quartile had a 3.9-fold higher risk of developing PD than the lowest quartile. In conclusion, the present GWAS identified PD-associated variants in Chinese population, as well as genetic factors shared among distant populations. Our findings shed light on the genetic homogeneity and heterogeneity of PD in different ethnic groups and suggested WGS might continue to improve our understanding of the genetic architecture of PD.

10.
J Neurol Neurosurg Psychiatry ; 94(6): 436-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36650038

RESUMO

BACKGROUND: The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD: In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aß42, Aß40 and Aß42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS: Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aß-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aß42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS: GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Mutação da Fase de Leitura , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
11.
Front Mol Neurosci ; 16: 1329554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273938

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.

12.
Transl Neurodegener ; 11(1): 46, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36284339

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS: Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS: We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS: Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Animais , Camundongos , Cinesinas/genética , Esclerose Lateral Amiotrófica/genética , Sinaptofisina , Proteína 2 Associada à Membrana da Vesícula , Paraplegia Espástica Hereditária/genética
13.
Nat Commun ; 13(1): 3490, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715418

RESUMO

Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase ß (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.


Assuntos
Neurônios Dopaminérgicos , Lipase Lipoproteica/metabolismo , Transtornos Parkinsonianos , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Camundongos , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo
14.
Nat Commun ; 13(1): 3501, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715442

RESUMO

Transposable elements (TEs) through evolutionary exaptation have become an integral part of the human genome, offering ample regulatory sequences and shaping chromatin 3D architecture. While the functional impacts of TE-derived sequences on early embryogenesis have been recognized, their roles in malignancy are only starting to emerge. Here we show that many TEs, especially the pluripotency-related human endogenous retrovirus H (HERVH), are abnormally activated in colorectal cancer (CRC) samples. Transcriptional upregulation of HERVH is associated with mutations of several tumor suppressors, particularly ARID1A. Knockout of ARID1A in CRC cells leads to increased transcription at several HERVH loci, which involves compensatory contribution by ARID1B. Suppression of HERVH in CRC cells and patient-derived organoids impairs tumor growth. Mechanistically, HERVH transcripts colocalize with nuclear BRD4 foci, modulating their dynamics and co-regulating many target genes. Altogether, we uncover a critical role for ARID1A in restraining HERVH, whose abnormal activation can promote tumorigenesis by stimulating BRD4-dependent transcription.


Assuntos
Retrovirus Endógenos , Fatores de Transcrição , Proteínas de Ciclo Celular/genética , Cromatina/genética , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética
15.
Signal Transduct Target Ther ; 7(1): 103, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35422062

RESUMO

Dynamic change of mitochondrial morphology and distribution along neuronal branches are essential for neural circuitry formation and synaptic efficacy. However, the underlying mechanism remains elusive. We show here that Pink1 knockout (KO) mice display defective dendritic spine maturation, reduced axonal synaptic vesicles, abnormal synaptic connection, and attenuated long-term synaptic potentiation (LTP). Drp1 activation via S616 phosphorylation rescues deficits of spine maturation in Pink1 KO neurons. Notably, mice harboring a knockin (KI) phosphor-null Drp1S616A recapitulate spine immaturity and synaptic abnormality identified in Pink1 KO mice. Chemical LTP (cLTP) induces Drp1S616 phosphorylation in a PINK1-dependent manner. Moreover, phosphor-mimetic Drp1S616D restores reduced dendritic spine localization of mitochondria in Pink1 KO neurons. Together, this study provides the first in vivo evidence of functional regulation of Drp1 by phosphorylation and suggests that PINK1-Drp1S616 phosphorylation coupling is essential for convergence between mitochondrial dynamics and neural circuitry formation and refinement.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Proteínas Quinases/metabolismo , Animais , Dinaminas/genética , Dinaminas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Fosforilação/genética , Proteínas Quinases/genética
16.
J Org Chem ; 87(1): 790-800, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958575

RESUMO

A simple and efficient copper-catalyzed selective transfer hydrogenation of nitriles to primary amine-boranes and secondary amines with an oxazaborolidine-BH3 complex is reported. The selectivity control was achieved under mild conditions by switching the solvent and the copper catalysts. More than 30 primary amine-boranes and 40 secondary amines were synthesized via this strategy in high selectivity and yields of up to 95%. The strategy was applied to the synthesis of 15N labeled in 89% yield.

17.
Mol Psychiatry ; 27(1): 95-112, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33686213

RESUMO

Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many "local splicing" events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.


Assuntos
Processamento Alternativo , Esquizofrenia , Processamento Alternativo/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Metiltransferases/genética , Isoformas de Proteínas/genética , Splicing de RNA , Esquizofrenia/genética , Análise de Sequência de RNA
18.
Mol Psychiatry ; 27(1): 466-475, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34650204

RESUMO

Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Encéfalo , Humanos , Desequilíbrio de Ligação/genética , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências de Repetição em Tandem
19.
Eur J Pharmacol ; 908: 174353, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274339

RESUMO

The purpose of this study was to investigate the role of glycyrrhizic acid (GA) in regulating myocardial ischemia-reperfusion injury (MIRI) in rats as well as the underlying mechanism. H9c2 cells were subjected to hypoxia/re-oxygenation (H/R) to mimic the MIRI in vitro, while a rat model of ischemia-reperfusion (I/R) was constructed by occlusion of the left anterior descending coronary artery for 0.5 h followed by 2 h of reperfusion. While flow cytometry and TUNEL assay were performed to analyze apoptosis in cells and myocardial tissue, echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were conducted to evaluate cardiac function and pathological changes, respectively. The levels of serum CK, CK-MB, LDH, AST, TNF-α, and IL-6 as well as the contents of MDA and SOD in tissues were measured by ELISA, while Western blot analysis was performed to detect the expression of endoplasmic reticulum stress (ERS)-related proteins. GA treatment significantly reduced apoptosis in H9c2 cells, while it alleviated left ventricular dysfunction, fibrosis and myocardial apoptosis, down-regulated the levels of CK, CK-MB, LDH, AST, TNF-α, IL-6, and MDA, and up-regulated SOD levels in I/R rats. Moreover, GA treatment led to a decrease in the expression of CHOP, GRP78, and p-PERK in both H/R cells and I/R rats. This study demonstrates that cardioprotective role of GA in MIRI may involve the attenuation of ERS-induced apoptosis and inflammation, potentially providing an alternative strategy for intervention of MIRI.


Assuntos
Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão Miocárdica , Animais , Ácido Glicirrízico , Ratos
20.
Biomed Res Int ; 2021: 6653802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860048

RESUMO

OBJECTIVE: Multiple genes have been identified to cause dilated cardiomyopathy (DCM). Nevertheless, there is still a lack of comprehensive elucidation of the molecular characteristics for DCM. Herein, we aimed to uncover putative molecular features for DCM by multiomics analysis. METHODS: Differentially expressed genes (DEGs) were obtained from different RNA sequencing (RNA-seq) datasets of left ventricle samples from healthy donors and DCM patients. Furthermore, protein-protein interaction (PPI) analysis was then presented. Differentially methylated genes (DMGs) were identified between DCM and control samples. Following integration of DEGs and DMGs, differentially expressed and methylated genes were acquired and their biological functions were analyzed by the clusterProfiler package. Whole exome sequencing of blood samples from 69 DCM patients was constructed in our cohort, which was analyzed the maftools package. The expression of key mutated genes was verified by three independent datasets. RESULTS: 1407 common DEGs were identified for DCM after integration of the two RNA-seq datasets. A PPI network was constructed, composed of 171 up- and 136 downregulated genes. Four hub genes were identified for DCM, including C3 (degree = 24), GNB3 (degree = 23), QSOX1 (degree = 21), and APOB (degree = 17). Moreover, 285 hyper- and 321 hypomethylated genes were screened for DCM. After integration, 20 differentially expressed and methylated genes were identified, which were associated with cell differentiation and protein digestion and absorption. Among single-nucleotide variant (SNV), C>T was the most frequent mutation classification for DCM. MUC4 was the most frequent mutation gene which occupied 71% across 69 samples, followed by PHLDA1, AHNAK2, and MAML3. These mutated genes were confirmed to be differentially expressed between DCM and control samples. CONCLUSION: Our findings comprehensively analyzed molecular characteristics from the transcriptome, epigenome, and genome perspectives for DCM, which could provide practical implications for DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Epigenoma , Genoma Humano , Genômica , Transcriptoma/genética , Cardiomiopatia Dilatada/sangue , Metilação de DNA/genética , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...