Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(4): 539-545, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34711989

RESUMO

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.


Assuntos
Biossíntese de Proteínas , RNA , Animais , Mamíferos/genética , Biossíntese de Proteínas/genética , RNA Viral/genética
2.
ACS Synth Biol ; 10(8): 2060-2075, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346207

RESUMO

Bidirectional optogenetic control of yeast gene expression has great potential for biotechnological applications. Our group has developed optogenetic inverter circuits that activate transcription using darkness, as well as amplifier circuits that reach high expression levels under limited light. However, because both types of circuits harness Gal4p and Gal80p from the galactose (GAL) regulon they cannot be used simultaneously. Here, we apply the Q System, a transcriptional activator/inhibitor system from Neurospora crassa, to build circuits in Saccharomyces cerevisiae that are inducible using quinic acid, darkness, or blue light. We develop light-repressed OptoQ-INVRT circuits that initiate darkness-triggered transcription within an hour of induction, as well as light-activated OptoQ-AMP circuits that achieve up to 39-fold induction. The Q System does not exhibit crosstalk with the GAL regulon, allowing coutilization of OptoQ-AMP circuits with previously developed OptoINVRT circuits. As a demonstration of practical applications in metabolic engineering, we show how simultaneous use of these circuits can be used to dynamically control both growth and production to improve acetoin production, as well as enable light-tunable co-production of geraniol and linalool, two terpenoids implicated in the hoppy flavor of beer. OptoQ-AMP and OptoQ-INVRT circuits enable simultaneous optogenetic signal amplification and inversion, providing powerful additions to the yeast optogenetic toolkit.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica , Neurospora crassa/genética , Optogenética , Saccharomyces cerevisiae , Transativadores , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/biossíntese , Transativadores/genética
3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404729

RESUMO

Chimeric antigen receptor (CAR)-engineered T cell therapies have been recognized as powerful strategies in cancer immunotherapy; however, the clinical application of CAR-T is currently constrained by severe adverse effects in patients, caused by excessive cytotoxic activity and poor T cell control. Herein, we harnessed a dietary molecule resveratrol (RES)-responsive transactivator and a transrepressor to develop a repressible transgene expression (RESrep) device and an inducible transgene expression (RESind) device, respectively. After optimization, these tools enabled the control of CAR expression and CAR-mediated antitumor function in engineered human cells. We demonstrated that a resveratrol-repressible CAR expression (RESrep-CAR) device can effectively inhibit T cell activation upon resveratrol administration in primary T cells and a xenograft tumor mouse model. Additionally, we exhibit how a resveratrol-inducible CAR expression (RESind-CAR) device can achieve fine-tuned and reversible control over T cell activation via a resveratrol-titratable mechanism. Furthermore, our results revealed that the presence of RES can activate RESind-CAR T cells with strong anticancer cytotoxicity against cells in vitro and in vivo. Our study demonstrates the utility of RESrep and RESind devices as effective tools for transgene expression and illustrates the potential of RESrep-CAR and RESind-CAR devices to enhance patient safety in precision cancer immunotherapies.


Assuntos
Citotoxicidade Imunológica/imunologia , Imunoterapia Adotiva/métodos , Leucemia Eritroblástica Aguda/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Biotechnol ; 39(11): 1366-1374, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34183860

RESUMO

Integrating synthetic biology into wearables could expand opportunities for noninvasive monitoring of physiological status, disease states and exposure to pathogens or toxins. However, the operation of synthetic circuits generally requires the presence of living, engineered bacteria, which has limited their application in wearables. Here we report lightweight, flexible substrates and textiles functionalized with freeze-dried, cell-free synthetic circuits, including CRISPR-based tools, that detect metabolites, chemicals and pathogen nucleic acid signatures. The wearable devices are activated upon rehydration from aqueous exposure events and report the presence of specific molecular targets by colorimetric changes or via an optical fiber network that detects fluorescent and luminescent outputs. The detection limits for nucleic acids rival current laboratory methods such as quantitative PCR. We demonstrate the development of a face mask with a lyophilized CRISPR sensor for wearable, noninvasive detection of SARS-CoV-2 at room temperature within 90 min, requiring no user intervention other than the press of a button.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19 , SARS-CoV-2/isolamento & purificação , Biologia Sintética , Dispositivos Eletrônicos Vestíveis , COVID-19/diagnóstico , Humanos , Têxteis
5.
ACS Synth Biol ; 10(5): 1143-1154, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835777

RESUMO

Dynamic control of microbial metabolism is an effective strategy to improve chemical production in fermentations. While dynamic control is most often implemented using chemical inducers, optogenetics offers an attractive alternative due to the high tunability and reversibility afforded by light. However, a major concern of applying optogenetics in metabolic engineering is the risk of insufficient light penetration at high cell densities, especially in large bioreactors. Here, we present a new series of optogenetic circuits we call OptoAMP, which amplify the transcriptional response to blue light by as much as 23-fold compared to the basal circuit (OptoEXP). These circuits show as much as a 41-fold induction between dark and light conditions, efficient activation at light duty cycles as low as ∼1%, and strong homogeneous light-induction in bioreactors of at least 5 L, with limited illumination at cell densities above 40 OD600. We demonstrate the ability of OptoAMP circuits to control engineered metabolic pathways in novel three-phase fermentations using different light schedules to control enzyme expression and improve production of lactic acid, isobutanol, and naringenin. These circuits expand the applicability of optogenetics to metabolic engineering.


Assuntos
Butanóis/metabolismo , Flavanonas/biossíntese , Ácido Láctico/biossíntese , Luz , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/efeitos da radiação , Optogenética/métodos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos da radiação , Reatores Biológicos , Proteínas de Ligação a DNA/genética , Ativação Enzimática/efeitos da radiação , Fermentação/efeitos da radiação , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Redes e Vias Metabólicas/genética , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos da radiação
6.
ACS Synth Biol ; 10(2): 219-227, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33492138

RESUMO

Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.


Assuntos
Engenharia Metabólica/métodos , Modelos Teóricos , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Algoritmos , Biocombustíveis , Fermentação/efeitos da radiação , Expressão Gênica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Cinética , Luz , Redes e Vias Metabólicas/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação
7.
Nat Chem Biol ; 17(1): 71-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895498

RESUMO

Control of the lac operon with isopropyl ß-D-1-thiogalactopyranoside (IPTG) has been used to regulate gene expression in Escherichia coli for countless applications, including metabolic engineering and recombinant protein production. However, optogenetics offers unique capabilities, such as easy tunability, reversibility, dynamic induction strength and spatial control, that are difficult to obtain with chemical inducers. We have developed a series of circuits for optogenetic regulation of the lac operon, which we call OptoLAC, to control gene expression from various IPTG-inducible promoters using only blue light. Applying them to metabolic engineering improves mevalonate and isobutanol production by 24% and 27% respectively, compared to IPTG induction, in light-controlled fermentations scalable to at least two-litre bioreactors. Furthermore, OptoLAC circuits enable control of recombinant protein production, reaching yields comparable to IPTG induction but with easier tunability of expression. OptoLAC circuits are potentially useful to confer light control over other cell functions originally designed to be IPTG-inducible.


Assuntos
Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Óperon Lac/efeitos da radiação , Engenharia Metabólica/métodos , Optogenética/métodos , Reatores Biológicos , Butanóis/metabolismo , Butanóis/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Isopropiltiogalactosídeo/farmacologia , Luz , Transdução de Sinal Luminoso , Ácido Mevalônico/metabolismo , Ácido Mevalônico/farmacologia , Regiões Promotoras Genéticas
8.
ACS Synth Biol ; 9(12): 3254-3266, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33232598

RESUMO

The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.


Assuntos
Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Butanóis/metabolismo , Galactoquinase/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ácido Láctico/metabolismo , Luz , Optogenética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
9.
Nat Commun ; 11(1): 4045, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792484

RESUMO

Monobodies are synthetic non-immunoglobulin customizable protein binders invaluable to basic and applied research, and of considerable potential as future therapeutics and diagnostic tools. The ability to reversibly control their binding activity to their targets on demand would significantly expand their applications in biotechnology, medicine, and research. Here we present, as proof-of-principle, the development of a light-controlled monobody (OptoMB) that works in vitro and in cells and whose affinity for its SH2-domain target exhibits a 330-fold shift in binding affinity upon illumination. We demonstrate that our αSH2-OptoMB can be used to purify SH2-tagged proteins directly from crude E. coli extract, achieving 99.8% purity and over 40% yield in a single purification step. By virtue of their ability to be designed to bind any protein of interest, OptoMBs have the potential to find new powerful applications as light-switchable binders of untagged proteins with the temporal and spatial precision afforded by light.


Assuntos
Luz , Optogenética/métodos , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Ligação Proteica/efeitos da radiação , Proteínas/química , Proteínas/metabolismo
10.
Nat Commun ; 11(1): 4044, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792536

RESUMO

A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.


Assuntos
Optogenética/métodos , Biologia Sintética/métodos , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
11.
Nat Chem Biol ; 15(6): 589-597, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086330

RESUMO

To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.


Assuntos
Luz , Engenharia Metabólica , Redes e Vias Metabólicas/efeitos da radiação , Optogenética/métodos , Organelas/metabolismo , Organelas/efeitos da radiação , Biologia Sintética , Indóis/metabolismo , Organelas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Synechocystis/efeitos da radiação
12.
Nature ; 555(7698): 683-687, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562237

RESUMO

The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1 of isobutanol and 2.38 ± 0.06 g l-1 of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.


Assuntos
Reatores Biológicos/microbiologia , Fermentação/efeitos da radiação , Luz , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/efeitos da radiação , Optogenética/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Biocombustíveis/provisão & distribuição , Butanóis/metabolismo , Escuridão , Etanol/metabolismo , Pentanóis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
Curr Opin Biotechnol ; 52: 56-65, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574344

RESUMO

Metabolic engineering aims to maximize production of valuable compounds using cells as biological catalysts. When incorporating engineered pathways into host organisms, an inherent conflict is presented between maintenance of cellular health and generation of products. This challenge has been addressed through two main modalities of dynamic control: decoupling growth from production via two-phase fermentations and autoregulation of pathways to optimize product formation. However, dynamic control can offer even greater potential for metabolic engineering through open-loop and closed-loop control modalities of the production phase. Here we review recent applications of dynamic control strategies in metabolic engineering. We then explore the potential of integrating biosensors and computer-assisted feedback control as a promising future modality of dynamic control.


Assuntos
Engenharia Metabólica/tendências , Escherichia coli/metabolismo , Fermentação , Homeostase , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...