Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 587: 216703, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341127

RESUMO

Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.


Assuntos
Proteínas de Ligação a DNA , Neoplasias da Vesícula Biliar , Humanos , Proteínas de Ligação a DNA/genética , Neoplasias da Vesícula Biliar/genética , Fatores de Transcrição/genética , Splicing de RNA , Proliferação de Células , RNA Mensageiro/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Proteína 1 Homóloga a Discs-Large/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Adv Sci (Weinh) ; 11(4): e2305442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009491

RESUMO

Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Microglia/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Regulação para Baixo , Inflamação/metabolismo , Traumatismos da Medula Espinal/metabolismo , Nucleotidiltransferases/metabolismo
3.
Sci Adv ; 9(48): eadj4605, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019907

RESUMO

Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.


Assuntos
Proteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Humanos , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteostase , Degradação Associada com o Retículo Endoplasmático , Camundongos Nus , Lipídeos
4.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978295

RESUMO

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Assuntos
Caenorhabditis elegans , Fatores de Diferenciação de Crescimento , Adulto , Camundongos , Humanos , Animais , Caenorhabditis elegans/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Envelhecimento/genética , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas Morfogenéticas Ósseas
5.
World J Psychiatry ; 13(6): 340-350, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37383281

RESUMO

BACKGROUND: Insomnia is a disease where individuals cannot maintain a steady and stable sleep state or fail to fall asleep. Western medicine mainly uses sedatives and hypnotic drugs to treat insomnia, and long-term use is prone to drug resistance and other adverse reactions. Acupuncture has a good curative effect and unique advantages in the treatment of insomnia. AIM: To explore the molecular mechanism of acupuncture at Back-Shu point for the treatment of insomnia. METHODS: We first prepared a rat model of insomnia, and then carried out acupuncture for 7 consecutive days. After treatment, the sleep time and general behavior of the rats were determined. The Morris water maze test was used to assess the learning ability and spatial memory ability of the rats. The expression levels of inflammatory cytokines in serum and the hippocampus were detected by ELISA. qRT-PCR was used to detect the mRNA expression changes in the ERK/NF-κB signaling pathway. Western blot and immunohistochemistry were carried out to evaluate the protein expression levels of RAF-1, MEK-2, ERK1/2 and NF-κB. RESULTS: Acupuncture can prolong sleep duration, and improve mental state, activity, diet volume, learning ability and spatial memory. In addition, acupuncture increased the release of 1L-1ß, 1L-6 and TNF-α in serum and the hippocampus and inhibited the mRNA and protein expression of the ERK/NF-κB signaling pathway. CONCLUSION: These findings suggest that acupuncture at Back-Shu point can inhibit the ERK/NF-κB signaling pathway and treat insomnia by increasing the release of inflammatory cytokines in the hippo-campus.

6.
Front Aging Neurosci ; 15: 1130833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284018

RESUMO

Backgrounds: The relationship between kidney function and cognitive impairment in Parkinson's disease (PD) is poorly understood and underexplored. This study aims to explore whether renal indices can serve as indicators to monitor the cognitive impairment of PD. Methods: A total of 508 PD patients and 168 healthy controls from the Parkinson's Progression Markers Initiative (PPMI) were recruited, and 486 (95.7%) PD patients underwent longitudinal measurements. The renal indicators including serum creatinine (Scr), uric acid (UA), and urea nitrogen, as well as UA/Scr ratio and estimated glomerular filtration rate (eGFR), were measured. Cross-sectional and longitudinal associations between kidney function and cognitive impairment were evaluated using multivariable-adjusted models. Results: eGFR was associated with lower levels of cerebrospinal fluid (CSF) Aß1-42 (p = 0.0156) and α-synuclein (p = 0.0151) and higher serum NfL (p = 0.0215) in PD patients at baseline. Longitudinal results showed that decreased eGFR predicted a higher risk of cognitive impairment (HR = 0.7382, 95% CI = 0.6329-0.8610). Additionally, eGFR decline was significantly associated with higher rates of increase in CSF T-tau (p = 0.0096), P-tau (p = 0.0250), and serum NfL (p = 0.0189), as well as global cognition and various cognitive domains (p < 0.0500). The reduced UA/Scr ratio was also linked to higher NfL levels (p = 0.0282) and greater accumulation of T-tau (p = 0.0282) and P-tau (p = 0.0317). However, no significant associations were found between other renal indices and cognition. Conclusion: eGFR is altered in PD subjects with cognitive impairment, and predict larger progression of cognitive decline. It may assist identifying patients with PD at risk of rapid cognitive decline and have the potential to monitoring responses to therapy in future clinical practice.

7.
Expert Rev Med Devices ; 20(6): 427-432, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027325

RESUMO

INTRODUCTION: The application of robotic navigation during spine surgery has advanced rapidly over the past two decades, especially in the last 5 years. Robotic systems in spine surgery may offer potential advantages for both patients and surgeons. This article serves as an update to our previous review and explores the current status of spine surgery robots in clinical settings. AREAS COVERED: We evaluated the literature published from 2020 to 2022 on the outcomes of robotics-assisted spine surgery, including accuracy and its influencing factors, radiation exposure, and follow-up results. EXPERT OPINION: The application of robotics in spine surgery has driven spine surgery into a new era of precision treatment through a form of artificial intelligence assistance that compensates for the limitations of human abilities. Modularized robot configurations, intelligent alignment and planning incorporating multimodal images, efficient and simple human - machine interaction, accurate surgical status monitoring, and safe control strategies are the main technical features for the development of orthopedic surgical robots. The use of robotics-assisted decompression, osteotomies, and decision-making warrants further study. Future investigations should focus on patients' needs while continuing to explore in-depth medical - industrial collaborative development innovations that improve the overall utilization of artificial intelligence and sophistication in disease treatment.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Humanos , Inteligência Artificial , Procedimentos Cirúrgicos Robóticos/métodos , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos
8.
Drug Des Devel Ther ; 17: 143-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36712948

RESUMO

Background: Postoperative delirium is common in older adult patients and associated with a poor prognosis. The use of benzodiazepine was identified as an independent risk factor for delirium, but there is no randomized controlled trial regarding the relationship between remimazolam, a new ultra-short acting benzodiazepine, and postoperative delirium. We designed a randomized controlled trial to evaluate if remimazolam increases the incidence of postoperative delirium compared with propofol in older adult patients undergoing orthopedic surgery with general anesthesia. Patients and Methods: We enrolled 320 patients aged more than 60 with American Society of Anesthesiologists physical status I-III who underwent orthopedic surgery. Patients were randomized to two groups to receive intraoperative remimazolam or propofol, respectively. Our primary outcome was the incidence of delirium within 3 days after surgery. Secondary outcome was emergence quality including the incidence of emergence agitation, extubation time, and length of post-anesthesia care unit (PACU) stay. Adverse events were also recorded. Results: The incidence of postoperative delirium was 15.6% in the remimazolam group and 12.4% in the propofol group (Risk ratio, 1.26; 95% CI, 0.72 to 2.21; Risk difference, 3.2%; 95% CI, -4.7% to 11.2%; P = 0.42). No significant differences were observed for time of delirium onset, duration of delirium, and delirium subtype between the two groups. Patients in remimazolam group had a lower incidence of hypotension after induction and consumed less vasoactive drugs intraoperatively, but had a longer postoperative extubation time and PACU stay. Conclusion: General anesthesia with remimazolam was not associated with an increased incidence of postoperative delirium compared with propofol in older adult patients undergoing orthopedic surgery.


Assuntos
Delírio , Delírio do Despertar , Procedimentos Ortopédicos , Propofol , Humanos , Idoso , Delírio do Despertar/epidemiologia , Propofol/efeitos adversos , Delírio/epidemiologia , Delírio/etiologia , Procedimentos Ortopédicos/efeitos adversos , Benzodiazepinas/efeitos adversos
10.
iScience ; 25(11): 105275, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36300003

RESUMO

Neurofibromatosis type 2 is an autosomal dominant multiple neoplasia syndrome and is usually caused by mutations in the neurofibromin 2 (NF2) gene, which encodes a tumor suppressor and initiates the Hippo pathway. However, the mechanism by which NF2 functions in the Hippo pathway isn't fully understood. Here we identified a NF2 c.770-784del mutation from a neurofibromatosis type 2 family. MD simulations showed that this mutation significantly changed the structure of the F3 module of the NF2-FERM domain. Functional assays indicated that the NF2 c.770-784del variant formed LLPS in the cytoplasm with LATS to restrain LATS plasma membrane localization and inactivated the Hippo pathway. Besides, this deletion partly caused a skipping of exon 8 and reduced the protein level of NF2, collectively promoting proliferation and tumorigenesis of meningeal cells. We identified an unrecognized mechanism of LLPS and splicing skipping for the NF2-induced Hippo pathway, which provided new insight into the pathogenesis of neurofibromatosis type 2.

11.
Cell Death Discov ; 8(1): 353, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941127

RESUMO

We explored the potential activity of compound 16 (Cpd16), a novel small molecule Nrf2 activator, in hydrogen peroxide (H2O2)-stimulated osteoblasts. In the primary murine/human osteoblasts and MC3T3-E1 murine osteoblastic cells, Cpd16 treatment at micro-molar concentrations caused disassociation of Keap1-Nrf2 and Nrf2 cascade activation. Cpd16 induced stabilization of Nrf2 protein and its nuclear translocation, thereby increasing the antioxidant response elements (ARE) reporter activity and Nrf2 response genes transcription in murine and human osteoblasts. Significantly, Cpd16 mitigated oxidative injury in H2O2-stimulited osteoblasts. H2O2-provoked apoptosis as well as programmed necrosis in osteoblasts were significantly alleviated by the novel Nrf2 activator. Cpd16-induced Nrf2 activation and osteoblasts protection were stronger than other known Nrf2 activators. Dexamethasone- and nicotine-caused oxidative stress and death in osteoblasts were attenuated by Cpd16 as well. Cpd16-induced osteoblast cytoprotection was abolished by Nrf2 short hairpin RNA or knockout, but was mimicked by Keap1 knockout. Keap1 Cys151S mutation abolished Cpd16-induced Nrf2 cascade activation and osteoblasts protection against H2O2. Importantly, weekly Cpd16 administration largely ameliorated trabecular bone loss in ovariectomy mice. Together, Cpd16 alleviates H2O2-induced oxidative stress and death in osteoblasts by activating Nrf2 cascade.

12.
Hepatobiliary Pancreat Dis Int ; 21(6): 543-550, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35705443

RESUMO

BACKGROUND: Early recurrence results in poor prognosis of patients with hepatocellular carcinoma (HCC) after liver transplantation (LT). This study aimed to explore the value of computed tomography (CT)-based radiomics nomogram in predicting early recurrence of patients with HCC after LT. METHODS: A cohort of 151 patients with HCC who underwent LT between December 2013 and July 2019 were retrospectively enrolled. A total of 1218 features were extracted from enhanced CT images. The least absolute shrinkage and selection operator algorithm (LASSO) logistic regression was used for dimension reduction and radiomics signature building. The clinical model was constructed after the analysis of clinical factors, and the nomogram was constructed by introducing the radiomics signature into the clinical model. The predictive performance and clinical usefulness of the three models were evaluated using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA), respectively. Calibration curves were plotted to assess the calibration of the nomogram. RESULTS: There were significant differences in radiomics signature among early recurrence patients and non-early recurrence patients in the training cohort (P < 0.001) and validation cohort (P < 0.001). The nomogram showed the best predictive performance, with the largest area under the ROC curve in the training (0.882) and validation (0.917) cohorts. Hosmer-Lemeshow testing confirmed that the nomogram showed good calibration in the training (P = 0.138) and validation (P = 0.396) cohorts. DCA showed if the threshold probability is within 0.06-1, the nomogram had better clinical usefulness than the clinical model. CONCLUSIONS: Our CT-based radiomics nomogram can preoperatively predict the risk of early recurrence in patients with HCC after LT.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Nomogramas , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Transplante de Fígado/efeitos adversos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
13.
Surg Endosc ; 36(12): 9046-9053, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35764836

RESUMO

BACKGROUND: Postoperative pain treatment for pediatrics is often inadequate and the evidence of pediatric postoperative analgesia is scarce. To our knowledge, no report regarding the comparison among caudal block, transversus abdominis plane (TAP) block and quadratus lumborum (QL) block for children undergoing lower abdominal laparoscopic surgery was found at present. Thus this trial aimed to compare the efficacies of them for children undergoing lower abdominal laparoscopic surgery. METHODS: One hundred and eighty children aged from 1 to 12 years undergoing lower abdominal laparoscopic surgery were included and randomized to receive caudal block, TAP block or QL block. The primary outcome was the Face, Legs, Activity, Cry, and Consolability (FLACC) score at 30 min, 1 h, 4 h, 8 h, 12 h, and 24 h and tramadol consumption during first 24 h postoperatively. Secondary outcomes included the number of children received tramadol, time to first tramadol request, parents' satisfaction and postoperative adverse reactions. RESULTS: The QLB group had lower postoperative FLACC scores at 8 h (median difference - 0.43, P = 0.03) than the Caudal group and at 4 h (median difference - 0.6, P = 0.001) and 8 h (median difference - 0.43, P = 0.03) than the TAPB group. The tramadol consumption was lower in the QLB group (28.43 ± 6.55) than the TAPB group (37.17 ± 6.12, P = 0.023). Although the number of children received tramadol did not differ among the three groups, the time to first tramadol request was longer in the QLB group (7.20 ± 0.79) than the caudal group (8.42 ± 0.61, P = 0.008). No statistical difference was observed concerning other secondary outcomes. CONCLUSIONS: QLB produced more effective postoperative analgesia for children undergoing laparoscopic abdominal surgery compared with the TAPB and caudal block.


Assuntos
Analgesia , Laparoscopia , Tramadol , Criança , Humanos , Tramadol/uso terapêutico , Músculos Abdominais , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Ultrassonografia de Intervenção , Anestésicos Locais
14.
Cell Death Discov ; 8(1): 147, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365618

RESUMO

Receptor interacting serine/threonine protein kinase 1 (RIPK1) activation and necroptosis have been genetically and mechanistically linked with human multiple sclerosis and neurodegenerative diseases for which demyelination is a common key pathology. Demyelination can be healed through remyelination which is mediated by new oligodendrocytes derived from the adult oligodendrocyte progenitor cells (OPCs). Unfortunately, the efficiency of remyelination declines with progressive aging partially due to the depletion of OPCs following chronic or repeated demyelination. However, to our knowledge, so far there is no drug which enhances proliferation of OPCs, and it is unknown whether inhibiting RIPK1 activity directly affect OPCs, the central player of remyelination. Using TNFα induced RIPK1-dependent necroptosis in Jurkat FADD-/- cells as a cell death assay, we screened from 2112 FDA-approved drugs and the drug candidates of new RIPK1 inhibitors selected by ourselves, and identified ZJU-37, a small molecule modified by introducing an amide bond to Nec-1s, is a new RIPK1 kinase inhibitor with higher potency than Nec-1s which has the best reported potency. We unveil in addition to protecting myelin from demyelination and axons from degeneration, ZJU-37 exhibits a new role on promoting proliferation of OPCs and enhancing remyelination by inhibiting RIPK1 kinase activity with higher potency than Nec-1s. Mechanistically, ZJU-37 promotes proliferation of OPCs by enhancing the transcription of platelet derived growth factor receptor alpha via NF-κB pathway. This work identifies ZJU-37 as a new drug candidate which enhances remyelination by promoting proliferation of OPCs, paving the way for a potential drug to enhance myelin repair.

15.
Curr Opin Pharmacol ; 64: 102205, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344763

RESUMO

The key pathology of multiple sclerosis (MS) comprises demyelination, axonal damage, and neuronal loss, and when MS develops into the progressive phase it is essentially untreatable. Identifying new targets in both axons and oligodendrocyte progenitor cells (OPCs) and rejuvenating the aged OPCs holds promise for this unmet medical need. We summarize here the recent evidence showing that mitochondria in both axons and OPCs are impaired, and lipid metabolism of OPCs within demyelinated lesion and in the aged CNS is disturbed. Given that emerging evidence shows that rewiring cellular metabolism regulates stem cell aging, to protect axons from degeneration and promote differentiation of OPCs, we propose that restoring the impaired metabolism of both OPCs and axons in the aged CNS in a synergistic way could be a promising strategy to enhance remyelination in the aged CNS, leading to novel drug-based approaches to treat the progressive phase of MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Idoso , Axônios/metabolismo , Axônios/patologia , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Esclerose Múltipla/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Células-Tronco
16.
Nat Commun ; 13(1): 1225, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264567

RESUMO

The age-dependent decline in remyelination potential of the central nervous system during ageing is associated with a declined differentiation capacity of oligodendrocyte progenitor cells (OPCs). The molecular players that can enhance OPC differentiation or rejuvenate OPCs are unclear. Here we show that, in mouse OPCs, nuclear entry of SIRT2 is impaired and NAD+ levels are reduced during ageing. When we supplement ß-nicotinamide mononucleotide (ß-NMN), an NAD+ precursor, nuclear entry of SIRT2 in OPCs, OPC differentiation, and remyelination were rescued in aged animals. We show that the effects on myelination are mediated via the NAD+-SIRT2-H3K18Ac-ID4 axis, and SIRT2 is required for rejuvenating OPCs. Our results show that SIRT2 and NAD+ levels rescue the aged OPC differentiation potential to levels comparable to young age, providing potential targets to enhance remyelination during ageing.


Assuntos
Células Precursoras de Oligodendrócitos , Remielinização , Envelhecimento , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Bainha de Mielina , NAD , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Remielinização/fisiologia , Sirtuína 2/genética
17.
Front Aging Neurosci ; 14: 1062964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36742206

RESUMO

Backgrounds: Apathy is common in Parkinson's disease (PD) but difficult to identify. Growing evidence suggests that abnormal iron metabolism is associated with apathy in PD. We aimed to investigate the clinical features and iron metabolism of apathetic patients with PD, and construct a nomogram for predicting apathy in PD. Methods: Data of 201 patients with PD were analyzed. Demographic data, Apathy Scale (AS) assessments, and serum iron metabolism parameters were obtained. Spearman correlations were used to assess relationships between AS scores and iron metabolism parameters, separately for male and female patients. Additionally, a nomograph for detecting apathetic patients with PD was built based on the results of logistic regression analysis. Results: The serum transferrin (TRF, p < 0.0024) concentration and total iron binding capacity (TIBC, p < 0.0024) were lower in the apathetic group after Bonferroni correction, and they were negatively associated with AS scores in male participants with PD (TRF, r = -0.27, p = 0.010; TIBC, r = -0.259, p = 0.014). The nomogram was developed by incorporating the following five parameters: age, sex, serum iron concentration, TIBC and Hamilton Depression Rating Scale (HAMD) scores, which showed good discrimination and calibration, with a consistency index of 0.799 (95% confidence interval = 0.732-0.865). Conclusion: Abnormal iron metabolism may contribute to apathy in PD, especially among men. TIBC levels in combination with HAMD scores can be effectively used for the prediction of apathetic patients with PD.

18.
Front Cell Neurosci ; 15: 768059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744634

RESUMO

Microglia dynamically monitor the microenvironment of the central nervous system (CNS) by constantly extending and retracting their processes in physiological conditions, and microglia/macrophages rapidly migrate into lesion sites in response to injuries or diseases in the CNS. Consequently, their migration ability is fundamentally important for their proper functioning. However, the mechanisms underlying their migration have not been fully understood. We wonder whether the voltage-gated proton channel HVCN1 in microglia/macrophages in the brain plays a role in their migration. We show in this study that in physiological conditions, microglia and bone marrow derived macrophage (BMDM) express HVCN1 with the highest level among glial cells, and upregulation of HVCN1 in microglia/macrophages is presented in multiple injuries and diseases of the CNS, reflecting the overactivation of HVCN1. In parallel, myelin debris accumulation occurs in both the focal lesion and the site where neurodegeneration takes place. Importantly, both genetic deletion of the HVCN1 gene in cells in vitro and neutralization of HVCN1 with antibody in the brain in vivo promotes migration of microglia/macrophages. Furthermore, neutralization of HVCN1 with antibody in the brain in vivo promotes myelin debris clearance by microglia/macrophages. This study uncovers a new role of HVCN1 in microglia/macrophages, coupling the proton channel HVCN1 to the migration of microglia/macrophages for the first time.

19.
Sci Rep ; 11(1): 20785, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675300

RESUMO

To retrospectively analyze the use of artificial pneumoperitoneum in CT scans, to explore its operation methods and technical points, and to lay the foundation for the widespread application of artificial pneumoperitoneum in CT. A total of 331 patients who underwent artificial pneumoperitoneum with CT angiography from January 1, 2013, to November 1, 2019, were recruited. All patients underwent standardized artificial pneumoperitoneum in the horizontal, left and right lateral, and prone positions during CT thin-layer scans of the abdomen and 3D reconstruction. Taking the surgical results as the gold standard, and using kappa test to verify the consistency of surgical results and imaging results. In all 331 patients, 43 patients had a normal peritoneal space, and 288 patients had an abnormal peritoneal space. And only 22 patients developed complications of subcutaneous emphysema, accounting for 6.6% of all 331 patients. In terms of the postoperative results, 28 were normal, and 303 were abnormal. The sensitivity, specificity and accuracy of CT diagnosis of abdominal adhesions using artificial pneumoperitoneum were 100%, 95.04%, and 95.46%, respectively. According to the Kappa consistency test, the imaging diagnosis from the CT scan with artificial pneumoperitoneum had a high consistency with the surgical results (kappa = 0.796, P < 0.05). The technique of artificial pneumoperitoneum CT is safe, reliable, highly practical, and proficient for obtaining good imaging results. It provides a good imaging basis for the diagnosis of intra-abdominal diseases, especially intra-abdominal adhesions.


Assuntos
Abdome/diagnóstico por imagem , Abdome/cirurgia , Pneumoperitônio Artificial , Aderências Teciduais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Adulto Jovem
20.
Front Physiol ; 12: 726345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588995

RESUMO

Maintenance of telomere length is essential to delay replicative cellular senescence. It is controversial on whether growth differentiation factor 11 (GDF11) can reverse cellular senescence, and this work aims to establish the causality between GDF11 and the telomere maintenance unequivocally. Using CRISPR/Cas9 technique and a long-term in vitro culture model of cellular senescence, we show here that in vitro genetic deletion of GDF11 causes shortening of telomere length, downregulation of telomeric reverse transcriptase (TERT) and telomeric RNA component (TERC), the key enzyme and the RNA component for extension of the telomere, and reduction of telomerase activity. In contrast, both recombinant and overexpressed GDF11 restore the transcription of TERT in GDF11KO cells to the wild-type level. Furthermore, loss of GDF11-induced telomere shortening is likely caused by enhancing the nuclear entry of SMAD2 which inhibits the transcription of TERT and TERC. Our results provide the first proof-of-cause-and-effect evidence that endogenous GDF11 plays a causal role for proliferative cells to maintain telomere length, paving the way for potential rejuvenation of the proliferative cells, tissues, and organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...