Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007366

RESUMO

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of set1 results in temporally progressed defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of Set1. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway stat92E and the BMP pathway mad genes that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as both stat92E and mad mutations suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotype when inhibiting a histone methyl-transferase also raise concerns about using their inhibitors in cancer therapy.

2.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38903096

RESUMO

The pair of transcription factors Bcl6-Blimp1 is well-known for follicular T helper (Tfh) cell fate determination, however, the mechanism(s) for Bcl6-independent regulation of CXCR5 during Tfh migration into germinal center (GC) is still unclear. In this study, we uncovered another pair of transcription factors, Bhlhe40-Pou2af1, that regulates CXCR5 expression. Pou2af1 was specifically expressed in Tfh cells whereas Bhlhe40 expression was found high in non-Tfh cells. Pou2af1 promoted Tfh formation and migration into GC by upregulating CXCR5 but not Bcl6, while Bhlhe40 repressed this process by inhibiting Pou2af1 expression. RNA-Seq analysis of antigen-specific Tfh cells generated in vivo confirmed the role of Bhlhe40-Pou2af1 axis in regulating optimal CXCR5 expression. Thus, the regulation of CXCR5 expression and migration of Tfh cells into GC involves a transcriptional regulatory circuit consisting of Bhlhe40 and Pou2af1, which operates independent of the Bcl6-Blimp1 circuit that determines the Tfh cell fate.

3.
Nat Cell Biol ; 26(6): 991-1002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38866970

RESUMO

The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.


Assuntos
Envelhecimento , Linfócitos B , Montagem e Desmontagem da Cromatina , Cadeias Pesadas de Imunoglobulinas , Linfopoese , Animais , Envelhecimento/genética , Envelhecimento/metabolismo , Linfócitos B/metabolismo , Linfopoese/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Transativadores/metabolismo , Transativadores/genética , Cromatina/metabolismo , Cromatina/genética , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Camundongos , Diferenciação Celular , Camundongos Knockout
4.
Nat Commun ; 15(1): 4561, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811575

RESUMO

The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.


Assuntos
DNA Helicases , Proteínas Nucleares , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Camundongos , Nucleossomos/metabolismo , Nucleossomos/genética , Ácidos Indolacéticos/metabolismo , RNA Polimerase II/metabolismo , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Hepatócitos/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Ativação Transcricional , Transcrição Gênica , Histonas/metabolismo , Desoxirribonuclease I/metabolismo , Cromatina/metabolismo , Humanos
5.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614090

RESUMO

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Assuntos
Diferenciação Celular , Cromatina , Código das Histonas , Histonas , Células Th2 , Diferenciação Celular/imunologia , Animais , Cromatina/metabolismo , Camundongos , Células Th2/imunologia , Histonas/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Região de Controle de Locus Gênico , Citocinas/metabolismo
6.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405894

RESUMO

Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.

7.
Nat Immunol ; 25(3): 390-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356060
8.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280375

RESUMO

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismo
9.
Poult Sci ; 102(12): 103036, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832188

RESUMO

Marek's disease virus (MDV), a naturally oncogenic, highly contagious alpha herpesvirus, induces a T cell lymphoma in chickens that causes severe economic loss. Marek's disease (MD) outcome in an individual is attributed to genetic and environmental factors. Further investigation of the host-virus interaction mechanisms that impact MD resistance is needed to achieve greater MD control. This study analyzed genome-wide DNA methylation patterns in 2 highly inbred parental lines 63 and 72 and 5 recombinant congenic strains (RCS) C, L, M, N, and X strains from those parents. Lines 63 and 72, are MD resistant and susceptible, respectively, whereas the RCS have different combinations of 87.5% Line 63 and 12.5% Line 72. Our DNA methylation cluster showed a strong association with MD incidence. Differentially methylated regions (DMRs) between the parental lines and the 5 RCS were captured. MD-resistant and MD-susceptible markers of DNA methylation were identified as transgenerational epigenetic inheritable. In addition, the growth of v-src DNA tumors and antibody response against sheep red blood cells differed among the 2 parental lines and the RCS. Overall, our results provide very solid evidence that DNA methylation patterns are transgenerational epigenetic inheritance (TEI) in chickens and also play a vital role in MD tumorigenesis and other immune responses; the specific methylated regions may be important modulators of general immunity.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças dos Ovinos , Animais , Ovinos , Galinhas , Resistência à Doença/genética , Suscetibilidade a Doenças/veterinária , Epigênese Genética , Doenças dos Ovinos/genética
10.
Nat Immunol ; 24(10): 1602-1603, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709987
11.
Cell Rep ; 42(8): 112924, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540600

RESUMO

Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.


Assuntos
Imunidade Inata , Fator 1 de Transcrição de Linfócitos T , Animais , Camundongos , Linfócitos , Tecido Linfoide/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo
12.
Front Immunol ; 14: 1186580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449212

RESUMO

T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.


Assuntos
Encefalomielite Autoimune Experimental , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Th17 , Virulência , Células Th2
13.
Biotechnol J ; 18(9): e2300027, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37265188

RESUMO

BACKGROUND: Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS: We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS: We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.


Assuntos
Escherichia coli , Lactose , Isopropiltiogalactosídeo/metabolismo , Isopropiltiogalactosídeo/farmacologia , Escherichia coli/metabolismo , Lactose/metabolismo , Glutamato Desidrogenase/metabolismo
14.
Nucleic Acids Res ; 51(12): 6172-6189, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177993

RESUMO

The spatial folding of eukaryotic genome plays a key role in genome function. We report here that our recently developed method, Hi-TrAC, which specializes in detecting chromatin loops among accessible genomic regions, can detect active sub-TADs with a median size of 100 kb, most of which harbor one or two cell specifically expressed genes and regulatory elements such as super-enhancers organized into nested interaction domains. These active sub-TADs are characterized by highly enriched histone mark H3K4me1 and chromatin-binding proteins, including Cohesin complex. Deletion of selected sub-TAD boundaries have different impacts, such as decreased chromatin interaction and gene expression within the sub-TADs or compromised insulation between the sub-TADs, depending on the specific chromatin environment. We show that knocking down core subunit of the Cohesin complex using shRNAs in human cells or decreasing the H3K4me1 modification by deleting the H3K4 methyltransferase Mll4 gene in mouse Th17 cells disrupted the sub-TADs structure. Our data also suggest that super-enhancers exist as an equilibrium globule structure, while inaccessible chromatin regions exist as a fractal globule structure. In summary, Hi-TrAC serves as a highly sensitive and inexpensive approach to study dynamic changes of active sub-TADs, providing more explicit insights into delicate genome structures and functions.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Técnicas Genéticas , Sequências Reguladoras de Ácido Nucleico , Animais , Humanos , Camundongos , Montagem e Desmontagem da Cromatina , Genoma
15.
PLoS Biol ; 21(5): e3002098, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126497

RESUMO

Adult stem cells undergo asymmetric cell divisions to produce 2 daughter cells with distinct cell fates: one capable of self-renewal and the other committed for differentiation. Misregulation of this delicate balance can lead to cancer and tissue degeneration. During asymmetric division of Drosophila male germline stem cells (GSCs), preexisting (old) and newly synthesized histone H3 are differentially segregated, whereas old and new histone variant H3.3 are more equally inherited. However, what underlies these distinct inheritance patterns remains unknown. Here, we report that the N-terminal tails of H3 and H3.3 are critical for their inheritance patterns, as well as GSC maintenance and proper differentiation. H3 and H3.3 differ at the 31st position in their N-termini with Alanine for H3 and Serine for H3.3. By swapping these 2 amino acids, we generated 2 mutant histones (i.e., H3A31S and H3.3S31A). Upon expressing them in the early-stage germline, we identified opposing phenotypes: overpopulation of early-stage germ cells in the H3A31S-expressing testes and significant germ cell loss in testes expressing the H3.3S31A. Asymmetric H3 inheritance is disrupted in the H3A31S-expressing GSCs, due to misincorporation of old histones between sister chromatids during DNA replication. Furthermore, H3.3S31A mutation accelerates old histone turnover in the GSCs. Finally, using a modified Chromatin Immunocleavage assay on early-stage germ cells, we found that H3A31S has enhanced occupancy at promoters and transcription starting sites compared with H3, while H3.3S31A is more enriched at transcriptionally silent intergenic regions compared to H3.3. Overall, these results suggest that the 31st amino acids for both H3 and H3.3 are critical for their proper genomic occupancy and function. Together, our findings indicate a critical role for the different amino acid composition of the N-terminal tails between H3 and H3.3 in an endogenous stem cell lineage and provide insights into the importance of proper histone inheritance in specifying cell fates and regulating cellular differentiation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Histonas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linhagem da Célula/genética , Células Germinativas/metabolismo , Aminoácidos/metabolismo
16.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040761

RESUMO

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Interferon gama/genética , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sequências Reguladoras de Ácido Nucleico , Homeostase , Células Th1 , Mamíferos
17.
PLoS Genet ; 19(3): e1010701, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36996023

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1004524.].

18.
Cell Rep ; 42(2): 112073, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735533

RESUMO

Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.


Assuntos
Imunidade Inata , Interleucina-33 , Animais , Camundongos , Células Th2 , Linfócitos/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo
19.
Methods Mol Biol ; 2611: 85-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807066

RESUMO

Spatial organization of the genome modulates pivotal biological processes. The emerging new technologies have provided novel insights into genome structure and its role in regulating cell activities. To examine the genome-wide chromatin interactions at accessible chromatin regions, we developed a DNA transposase-mediated analysis of chromatin looping (Trac-looping) method for simultaneously detecting chromatin interactions and chromatin accessibility. Here, we describe a detailed protocol of generating Trac-looping libraries.


Assuntos
Cromatina , Cromossomos , Genoma
20.
Nat Commun ; 13(1): 6679, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335136

RESUMO

The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Genoma , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...