Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Bone ; : 117146, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844017

RESUMO

Obesity has become a major global health problem and the effect on bone formation has received increasing attention. However, the interaction between obesity and bone metabolism is complex and still not fully understood. Here, we show that caveolin-1 (Cav1), a membrane scaffold protein involved in regulating a variety of cellular processes, plays a key regulatory role as a bridge connecting obesity and bone metabolism. High-fat diet (HFD)-induced obese C57BL/6J mouse displayed a significant increase in Cav1 expression and lower osteogenic activity; In vitro treatment of osteoblastic MC3T3-E1 cells with 1 mM free fatty acids (FFA) significantly promoted Cav1 expression and PINK1/Parkin regulated mitophagy, but inhibited the expression of osteogenic marker genes. Conversely, reduced expression of the Cav1 gene prevented these effects. Both endogenous oxidative stress and Sirt1 pathway were also significantly reduced after Cav1 knockdown in FFA-treated cells. Finally, Cav1-Sirt1 docking and co-immunoprecipitation results showed that Cav1 interacted with Sirt1 and FFA enhanced the interaction. Taken together, these results suggest that obesity impairs bone development and formation through up-regulation of the Cav1 gene, which lead to inhibition of Sirt1/FOXO1 and Sirt1/PGC-1α signaling pathways through interacting with Sirt1 molecule, and an increase of mitophagy level.

2.
Theriogenology ; 226: 120-129, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38878464

RESUMO

Since the first mouse induced pluripotent stem cells (iPSCs) was derived, the in vitro culture of domestic iPSCs functionally and molecularly comparable with mouse iPSCs has been a challenge. Here, we established dairy goat iPSCs (giPSCs) from goat ear fibroblast cells with mouse iPSCs morphology, the expression of pluripotent markers and differentiation ability in vitro delivered by piggyBac transposon with nine Dox-inducible exogenous reprogramming factors. These reprogramming factors were bOMSK (bovine OCT4, CMYC, SOX2, and KLF4), pNhL (porcine NANOG and human LIN28), hRL (human RARG and LRH1), and SV40 Large T. Notably, AF-giPSCs (induced in activin A and bFGF condition) were capable of differentiation in embryoid bodies in vitro and could contribute to interspecies chimerism in mouse E6.5 embryos in vitro, demonstrating that AF-giPSCs have the developmental capability to generate some embryonic cell lineages. Moreover, Wnt/ß-catenin signaling has an important role in driving goat induced trophoblast-like stem cells (giTLSCs) from Dox-independent giPSCs. This study will support further establishment of the stable giPSC lines without any integration of exogenous genes.

3.
Environ Sci Pollut Res Int ; 31(28): 40941-40957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837031

RESUMO

Compressed leachate is a contaminated liquid containing various organic and inorganic pollutants produced in municipal refuse transfer stations, which pollute soil and groundwater, posing serious risks to the environment and human health. The Environmental Technology Co., Ltd. (Shenzhen, Guangdong Province, South China) treated compressed leachate obtained from a refuse transfer station. The chemical oxygen demand (COD) (641.2 mg/L) of treated compressed leachate did not meet the wastewater quality standards in China for discharge into municipal sewers (COD ≤ 500 mg/L) and the company's design discharge requirements (COD ≤ 400 mg/L). Therefore, their further in-depth treatment is necessary. To this end, waste tobacco leaves were used as the biotemplate herein, and Fe/La-co-doped TiO2 (xFe,yLa)-TTiO2(g) was synthesized using a solvothermal-assisted biotemplating method. The photocatalytic depth treatment of compressed leachate was performed under simulated solar light using the prepared catalysts. After (3Fe,3La)-TTiO2(g) treatment, the COD of the leachate decreased from 641.2 to 280.1 mg/L, and the COD removal rate was 1.2, 1.1, and 1.6 times higher than that of pure Fe-doped, La-doped and non-biological template TiO2, respectively. Characterization confirmed that the biological template endowed the catalyst with a unique morphology and high specific surface area. Its rich activity sites are conducive to enhancing the adsorption capacity of pollutants and providing an ideal place for photocatalytic reactions. Co-doping with iron and lanthanum ions altered the band structure of TiO2 and promoted the interconversion of Fe3+/Fe2+ and La3+/La2+ during photocatalysis. First-principles density functional theory simulations demonstrated that co-doping Fe and La in TiO2 created impurity levels that facilitated the transfer of photogenerated electrons. This study provides a new purification pathway for the depth treatment of compressed leachate.


Assuntos
Titânio , Poluentes Químicos da Água , Titânio/química , Poluentes Químicos da Água/química , Ferro/química , China , Catálise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
4.
Nano Lett ; 24(22): 6805-6812, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787360

RESUMO

Near-field enhanced mid-infrared light-matter interactions via metallic plasmonic antennae (PA) have attracted much attention but are inevitably limited by the detuning between their narrow band and the broad applied spectral range. Here, we develop a new low-temperature incubation synthetic method to acquire uniform Ag microparticles (MPs) with numerous hotspots. Their plasmonic band is remarkably extended by the plasmonic coupling of numerous hotspots and covers the entire mid-infrared range (400-4000 cm-1). Hence, the almost complete molecular fingerprint of 4-mercaptobenzonitrile was successfully probed for the first time via resonant surface-enhanced infrared absorption (rSEIRA), and the rSEIRA spectra of different essential amino acids were further detected and exhibit a high spectral identification degree assisted by machine learning. This work changes the inertia perception of "narrow band and large size but small hotspot area" of mid-infrared metallic PA and paves the way for the ultrasensitive mid-infrared optical sensing.

5.
Chemosphere ; 359: 142308, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734246

RESUMO

Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.


Assuntos
Antimônio , Bismuto , Oxirredução , Águas Residuárias , Poluentes Químicos da Água , Antimônio/química , Adsorção , Bismuto/química , Águas Residuárias/química , Catálise , Poluentes Químicos da Água/química , Processos Fotoquímicos , Eliminação de Resíduos Líquidos/métodos
6.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754666

RESUMO

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.


Assuntos
Luteolina , Nanofibras , gama-Ciclodextrinas , Nanofibras/química , gama-Ciclodextrinas/química , Luteolina/química , Luteolina/farmacologia , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Picratos/química , Compostos de Bifenilo/química
7.
Water Res ; 258: 121769, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759284

RESUMO

Carbonyl compounds are important components of natural organic matter (NOM) with high reactivity, so that play a pivotal role in the dynamic transformation of NOM. However, due to the lack of effective analytical methods, our understanding on the molecular composition of these carbonyl compounds is still limited. Here, we developed a high-throughput screening method to detect carbonyl molecules in complex NOM samples by combining chemical derivatization with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). In six different types of dissolved organic matter (DOM) samples tested in this study, 20-30 % of detected molecules contained at least one carbonyl group, with relative abundance accounted for 45-70 %. These carbonyl molecules displayed lower unsaturation level, lower molecular weight, and higher oxidation degree compared to non-carbonyl molecules. More importantly, the measured abundances of carbonyl molecules were consistent with the results of 13C nuclear magnetic resonance (NMR) analysis. Based on this method, we found that carbonyl molecules can be produced at DOM-ferrihydrite interface, thus playing a role in shaping the molecular diversity of DOM. This method has broad application prospects in screening carbonyl compounds from complex mixtures, and the same strategy can be used to directional identification of molecules with other functional groups as well.


Assuntos
Compostos Orgânicos , Compostos Orgânicos/química , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Substâncias Húmicas/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-38695863

RESUMO

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Leite Humano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptococcus , RNA Ribossômico 16S/genética , Humanos , Feminino , China , DNA Bacteriano/genética , Leite Humano/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/classificação , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Genes Bacterianos
9.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
10.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672499

RESUMO

Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Tecido Adiposo Branco , Metabolismo Energético , Homeostase , Obesidade , Humanos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Obesidade/metabolismo , Termogênese , Tecido Adiposo/metabolismo
11.
J Hazard Mater ; 469: 134080, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522204

RESUMO

Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.


Assuntos
Benzopiranos , Substâncias Húmicas , Solo , Substâncias Húmicas/análise , Solo/química , Elétrons
12.
J Agric Food Chem ; 72(11): 5625-5635, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447070

RESUMO

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX, which is a key step in the synthesis of porphyrins in vivo. PPO inhibitors use protoporphyrinogen oxidase as the target and block the biosynthesis process of porphyrin by inhibiting the activity of the enzyme, eventually leading to plant death. In this paper, phenyl triazolinone was used as the parent structure, and the five-membered heterocycle with good herbicidal activity was introduced by using the principle of substructure splicing. According to the principle of bioisosterism, the sulfur atoms on the thiophene ring were replaced with oxygen atoms. Finally, 33 phenyl triazolinones and their derivatives were designed and synthesized, and their characterizations and biological activities were investigated. The in vitro PPO inhibitory activity and greenhouse herbicidal activity of 33 target compounds were determined, and compound D4 with better activity was screened out. The crop safety determination, field weeding effect determination, weeding spectrum determination, and crop metabolism study were carried out. The results showed that compound D4 showed good safety to corn, soybean, wheat, and peanut but poor selectivity to cotton. The field weeding effect of this compound is comparable to that of the commercial herbicide sulfentrazone. The herbicidal spectrum experiment showed that compound D4 had a wide herbicidal spectrum and a good growth inhibition effect on dicotyledonous weeds. Molecular docking results showed that compound D4 forms a hydrogen bond with amino acid residue Arg-98 in the tobacco mitochondria (mtPPO)-active pocket and forms two π-π stacking interactions with Phe-392. This indicates that compound D4 has stronger PPO inhibitory activity. This indicates that compound D4 has wide prospects for development.


Assuntos
Inibidores Enzimáticos , Herbicidas , Simulação de Acoplamento Molecular , Protoporfirinogênio Oxidase , Inibidores Enzimáticos/química , Herbicidas/química , Plantas Daninhas , Relação Estrutura-Atividade
16.
Food Sci Biotechnol ; 33(2): 465-474, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222908

RESUMO

Hemerocallis citrina Borani is a commonly consumed food in Asia and possesses many biologically active ingredients. In this study, a protein named Hemerocallis citrina Borani protein (HcBP) was purified using ammonium sulfate fractionation and anion exchange chromatography. Protease assays revealed that HcBP has peroxidase activity. Meanwhile, the UV absorption spectrum showed that HcBP contains heme. Notably, HcBP showed significant inhibitory effects on human hepatoma cancer cell proliferation. Mechanism investigations indicated that HcBP treatment resulted in overproduction of reactive oxygen species (ROS) and induced mitochondria-dependent apoptosis in human hepatoma cancer cells. Furthermore, we found HcBP not only downregulated pyruvate kinase M2 (PKM2) activity but also decreased the expression and nuclear levels of PKM2. The inhibition of PKM2 led to the downregulation of GLUT1, LDHA and PDK, and thus caused the suppression of glycolysis. In summary, our results suggested that HcBP has potential anti-hepatocellular carcinoma activity.

17.
Behav Sci (Basel) ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247697

RESUMO

China's delayed retirement policy will be prudently rolled out at the appropriate time, yet the public's acceptance of this policy is concerning. To address this issue, our endeavor explores the impact of framing and anchoring effects on policy acceptance, aiming to mitigate the populace's resistance to the new policy. We conducted two survey studies on the Chinese population aged 16-65. Achieved through an online survey, Study 1 (N = 225) demonstrated that information framing significantly influences the public's acceptance of the delayed retirement policy. It was found that perceived fairness plays a mediating role between information framing and policy acceptance. Notably, the positive frame had a more pronounced effect on acceptance than its negative counterpart, with the positive presentation being perceived as more fair. Study 2 (N = 383), utilizing a combination of online and offline approaches, revealed that the anchoring effect moderates the relationship between information framing and perceived fairness. The interaction of anchoring and framing effects significantly influences perceived fairness, subsequently promoting public policy acceptance. The interplay between anchoring and framing effects significantly shapes perceived fairness, in turn bolstering the public's receptiveness to policy. These insights offer reasonable communication strategies for the smooth advancement of new policies, further enriching the field of behavioral science.

19.
Environ Sci Pollut Res Int ; 31(5): 7543-7555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165545

RESUMO

The elimination of antimony pollution has attracted increasing concerns because of its high toxicity to human health and the natural environment. In this work, biomimetic δ-MnO2 was synthesized by using waste tobacco stem-silks as biotemplate (Bio-δ-MnO2) and used in the capture of Sb(III)from aqueous solution. The tobacco stem-silks not only provided unique wrinkled morphologies but also contained carbon element self-doped into the resulting samples. The maximum Sb(III) adsorption capacity reached 763.4 mg∙g -1, which is 2.06 times higher than δ-MnO2 without template (370.0 mg∙g -1), 4.53 times than tobacco stem-silks carbon (168.5 mg∙g -1), and 10.39 times than commercial MnO2 (73.5 mg∙g -1), respectively. The isotherm and kinetic studies indicated that the adsorption behavior was consistent with the Langmuir isotherm model and the pseudo-second-order kinetic equation. As far as we are aware, the adsorption capacity of Bio-δ-MnO2 is much higher than that of most Sb(III) adsorbents. FT-IR, XPS, SEM, XRD, and Zeta potential analyses showed that the main mechanism for the adsorption of Sb(III) by Bio-δ-MnO2 includes electrostatic attraction, surface complexation, and redox. Overall, this study provides a new sustainable way to convert agricultural wastes to more valuable products such as biomimetic adsorbent for Sb(III) removal in addition to conventional activated carbon and biochar.


Assuntos
Óxidos , Poluentes Químicos da Água , Humanos , Cinética , Compostos de Manganês , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA