Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438725

RESUMO

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Assuntos
Adenosina , Hipertensão Arterial Pulmonar , Animais , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Metilação de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Food Chem X ; 21: 101129, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298353

RESUMO

Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method.

3.
J Hazard Mater ; 465: 133458, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215522

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus that has precipitated a worldwide pandemic of coronavirus disease since 2019. Developing an effective disinfection strategy is crucial to prevent the risk of surface cross-contamination by SARS-CoV-2. This study employed pseudovirus and the receptor-binding domain (RBD) protein of SARS-CoV-2 as models to investigate the spike protein inactivation process and its underlying mechanisms using a novel nonthermal technology. Cold plasma combined with 222 nm ultraviolet (CP+UV) treatment was applied to accelerate the generation of reactive species and enhance sterilization efficiency. The results indicated that the binding activity of RBD protein was completely inhibited at specific concentrations (0.01-0.05 mg/cm2) with corresponding treatment times of 15-30 s. The mechanism potentially involves the reactive species generated by CP+UV, which react with the spike protein RBD of SARS-CoV-2, leading to the loss of SARS-CoV-2 infectivity by causing damage to the ß-sheet structure and chemical bonds in the RBD protein. Validated by a biosafety level 3 (BSL3) laboratory, the CP+UV treatment for 30 s could completely inactivate SARS-CoV-2 with a concentration of 19054 ± 1112 TCID50/cm2. Therefore, this study potentially provides a novel disinfection strategy for the inactivation of SARS-CoV-2 on surface cross-contamination.


Assuntos
COVID-19 , Gases em Plasma , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Front Immunol ; 14: 1152881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153557

RESUMO

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Macrófagos/metabolismo , Insuficiência Cardíaca/metabolismo
5.
Foods ; 12(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37107401

RESUMO

Plasma-activated liquid is a novel non-thermal antibacterial agent against a wide spectrum of foodborne bacteria, yet fewer studies focused on its disinfection of meat spoilage bacteria. In this study, the antibacterial properties of plasma-activated lactic acid (PALA) on Pseudomonas lundensis, isolated and identified from spoilage beef, were investigated. A plasma jet was used to treat lactic acid (0.05-0.20%) for 60-120 s. The results presented that the 0.2% LA solution treated with plasma for 120 s caused a 5.64 log reduction. Additionally, the surface morphology, membrane integrity and permeability were altered slightly and verified by scanning electron microscopy, double staining of SYTO-9 and propidium iodide, and a K+ test kit. The intracellular organization of the cells, observed by transmission electron microscopy, was damaged significantly. Increased intracellular reactive oxygen species (ROS) levels exceeded the antioxidant ability of glutathione (GSH), leading to a reduction in the activity of malate dehydrogenase (MDH), succinic dehydrogenase (SDH) and intracellular ATP levels. Metabolomics analysis indicated that the energy and synthesis of essential components, such as DNA and amino acid-related metabolic pathways, were disturbed. In conclusion, this research established a theoretical basis for the use of PALA in refrigerated beef preservation by shedding light on the bacteriostatic effect of PALA against Pseudomonas lundensis.

7.
Int J Food Microbiol ; 370: 109633, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35313251

RESUMO

Natural food flavour (E)-2-hexenal, a green leaf volatile, exhibits potent antifungal activity on Aspergillus flavus, but its antifungal mechanism has not been fully elucidated. In this study, we evaluated (E)-2-hexenal-induced apoptosis in A. flavus conidia and explored the underlying mechanisms of action. Evidence of apoptosis in A. flavus conidia were investigated by methods including fluorescent staining, flow cytometry, confocal laser scanning microscope, and spectral analysis. Results indicated that 4.0 µL/mL (minimum fungicidal concentration, MFC) of (E)-2-hexenal application induced early markers of apoptotic cell death in A. flavus conidia with a rate of 38.4% after 6 h exposure. Meanwhile, typical hallmarks of apoptosis, such as decreased mitochondrial membrane potential (MMP), activated metacaspase activity, fragmented DNA, mitochondrial permeability transition pore (MPTP) opening and cytochrome c (Cyt C) release from mitochondria to the cytosol were also confirmed. Furthermore, intracellular ATP levels were reduced by 63.3 ± 3.6% and reactive oxygen species (ROS) positive cells increased by 31.1 ± 3.1% during A. flavus apoptosis induced by (E)-2-hexenal. l-Cysteine (Cys), an antioxidant, could strongly block the excess ROS generation caused by (E)-2-hexenal, which correspondingly resulted in a significant inhibition of MPTP opening and decrease of apoptosis in A. flavus, indicating that ROS palys a pivotal role in (E)-2-hexenal-induced apoptosis. These results suggest that (E)-2-hexenal exerts its antifungal effect on A. flavus conidia via a ROS-dependent mitochondrial apoptotic pathway.


Assuntos
Antifúngicos , Aspergillus flavus , Aldeídos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Apoptose , Aspergillus flavus/metabolismo , Aditivos Alimentares/farmacologia , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos
8.
Front Oncol ; 9: 823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508374

RESUMO

The toxicity and side effects of traditional chemotherapeutic drugs are the main causes of chemotherapy failure. To improve the specificity and selectivity of chemotherapeutic drugs for tumor cells, a novel redox-sensitive polymer prodrug, polyethylene glycol-poly (ß-benzyl-L-aspartate) (PEG-PBLA)-SS-paclitaxel (PPSP), was designed and synthesized in this study. The PPSP micelle was manufactured via high-speed dispersion stirring and dialysis. The particle size and zeta potential of this prodrug micelle were 63.77 ± 0.91 nm and -25.8 ± 3.24 mV, respectively. The micelles were uniformly distributed and presented a spherical morphology under a transmission electron microscope. In the tumor physiological environment, the particle size of the PPSP micelles and the release rate of paclitaxel (PTX) were significantly increased compared with those of mPEG-PBLA-CC-PTX (PPCP) micelles, reflecting the excellent redox-sensitive activity of the PPSP micelles. The inhibitory effect of PPSP on HepG2, MCF-7 and HL-7702 cell proliferation was investigated with MTT assays, and the results demonstrated that PPSP is superior to PTX with respect to the inhibition of two tumor cell types at different experimental concentration. Simultaneously PPSP has lower toxicity against HL-7702 cells then PTX and PPCP. Moreover, the blank micelle from mPEG-PBLA showed no obvious toxicity to the two tumor cells at different experimental concentrations. In summary, the redox-sensitive PPSP micelle significantly improved the biosafety and the anti-tumor activity of PTX.

9.
Acta Biomater ; 88: 357-369, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822554

RESUMO

Amphiphilic poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) and poly(ethylene glycol)-poly(benzyl-l-aspartate) (PPA) block copolymers were synthesized as pH-responsive and pH-nonresponsive copolymers, respectively. Polymer micelles were fabricated by the film dispersion method, and hydroxycamptothecin (HCPT) was physically encapsulated into the micelles. The average diameter of the HCPT-loaded PIPA micelles (PIPAH micelles) was approximately 230 nm, which was slightly smaller than that of the HCPT-loaded PPA micelles (PPAH micelles, approximately 260 nm). The drug-loading content and encapsulation efficiency of the PIPAH micelles (3.33% and 68.89%, respectively) were slightly higher than those of the PPAH micelles (2.90% and 59.68%, respectively). The PIPAH micelles exhibited better colloid stability, storage stability, and plasma stability than the PPAH micelles. Drug release from the PIPAH micelles with imino groups was pH dependent, and more than 75% or 65% of the loaded HCPT was released within 24 h in weakly acidic media (pH 5.0 or 6.0, respectively). An in vitro cell assay demonstrated that the pH-sensitive micelles exhibited potent suppression of cancer cell proliferation and little cytotoxicity on normal cells. Additionally, these micelles could be efficiently internalized by the tumor cells through macropinocytosis- and caveolin-mediated endocytotic pathways. HCPT-loaded micelles had longer circulation time than the HCPT solution in a pharmacokinetic study. In vivo antitumor experiments indicate that the PIPAH micelles had better antitumor efficacy than the pH-insensitive PPAH micelles and the HCPT solution. Therefore, the pH-responsive PIPAH micelles have great potential for high-efficiency delivery of HCPT. STATEMENT OF SIGNIFICANCE: In this study, a new type of pH-responsive amphiphilic copolymer, poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) block copolymer, was synthesized. This copolymer had then self-assembled to form nanomicelles for tumor intracellular delivery of hydroxycamptothecin (HCPT) for the first time. In in vitro test, the PIPAH micelles exhibited adequate stability and pH-dependent drug release. To one's excitement, the PIPAH micelles exhibited better antitumor efficacy and biosafety than the pH-insensitive micelles (PPAH) and the HCPT solution in in vitro and in vivo antitumor experiments. Therefore, the pH-responsive micelles in this study have significant potential to be used for high-performance delivery of HCPT and potentially for the targeted delivery of other cancer therapeutic agents. The polymer designed in this study can be used as a carrier of poorly soluble drugs or other active ingredients.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Espaço Intracelular/metabolismo , Micelas , Polímeros/química , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Endossomos/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Polímeros/síntese química , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
10.
J Agric Food Chem ; 67(4): 1138-1145, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30614691

RESUMO

Fungal contamination imposes threats to agriculture and food production and human health. A method to safely and effectively restrict fungal contamination is still needed. Here, we report the effect and mode of action of ( E)-2-hexenal, one of the green leaf volatiles (GLVs), on the spore germination of Aspergillus flavus, which can contaminate a variety of crops. The EC50 value, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) of ( E)-2-hexenal were 0.26, 1.0, and 4.0 µL/mL, respectively. As observed by scanning electron microscopy (SEM), the surface morphology of A. flavus spores did not change after treatment with the MIC of ( E)-2-hexenal, but the spores were shrunken and depressed upon treatment with the MFC of ( E)-2-hexenal. The MIC and MFC of ( E)-2-hexenal induced evident phosphatidylserine (PS) externalization of A. flavus spores as detected by double staining with Annexin V-FITC and propidium iodide, indicating that early apoptosis was potentially induced. Furthermore, sublethal doses of ( E)-2-hexenal disturbed pyruvate metabolism and reduced the intracellular soluble protein content of A. flavus spores during the early stage of germination, and MIC treatment decreased acetyl-CoA and ATP contents by 65.7 ± 3.7% and 53.9 ± 4.0% ( P < 0.05), respectively. Additionally, the activity of mitochondrial dehydrogenases was dramatically inhibited by 23.8 ± 2.2% ( P < 0.05) at the MIC of ( E)-2-hexenal. Therefore, the disruption of mitochondrial energy metabolism and the induction of early apoptosis are involved in the mechanism of action of ( E)-2-hexenal against A. flavus spore germination.


Assuntos
Aldeídos/farmacologia , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Aldeídos/química , Antifúngicos/química , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Metabolismo Energético/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...