Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
J Ethnopharmacol ; 337(Pt 1): 118825, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278294

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cooling Blood and Detoxicating Formular (CBDF) based on the theory of cooling blood and dosing detoxification, is a useful traditional Chinese medicine (TCM) medication for psoriasis with blood-heat syndrome. AIM OF THE STUDY: Investigate the active constituents and mechanisms of the CBDF for the treatment of psoriasis. MATERIALS AND METHODS: UPLC-Q-Orbitrap-HRMS technique was used to analyse the ingredients of CBDF absorbed into plasma and skin tissue. The therapeutic efficacy of CBDF was evaluated in treating an imiquimod (IMQ)-induced mouse model was assessed. Transcriptome analysis and gene enrichment analysis were used to explore the changes in gene expression and pathways following treatment with the CBDF. Validation was performed using western blotting, quantitative RT-PCR, flow cytometry, gene knockout and molecular docking in vitro and in vivo. RESULTS: 26 compounds were identified in the plasma of IMQ-induced psoriasis-like mouse with CBDF treatment, and higher levels of cimifugin in the lesion. CBDF improved the pathological changes of psoriasis, with inhibition of TNF-α, IL-23, and IL-17A and upregulation of IL-10. Gene enrichment analysis showed that the therapeutic effect of CBDF was related to AMPK pathway. In psoriasis lesions, the AMPK and fatty acid oxidation were suppressed, and glycolysis was enhanced. The Prkaa2, encoding AMPKα2 was down-regulated in psoriasis patients. CBDF inhibited glycolysis while stimulating fatty acid oxidation by the activating AMPK, thereby exerting an inhibitory effect on inflammation. CBDF inhibited MHCII, CD80, and CD86 on dendritic cells of skin drainage lymph node. In vitro, CBDF inhibited bone marrow-derived DCs secrete IL-23, TNF-α, and lactate, while enhanced fatty acid oxidation and AMPK activity. However, the therapeutic effect was weakened in AMPKα2 deletion. Additionally, psoriasis lesions and dendritic cells activation were significantly aggravated after AMPKα2 knockout. The key ingredients of the CBDF, cimifugin, rutin, astilbin, quercetin, and prim-O-glucosylcimifugin, all exhibit a notable affinity towards AMPKα2 binding. CONCLUSIONS: CBDF ameliorates psoriasis symptoms and inhibit dendritic cells maturation by regulating metabolic reprogramming in an AMPK-dependent mechanism.

2.
Discov Oncol ; 15(1): 463, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298052

RESUMO

BACKGROUND: Bone metastasis (BM) occurs when colon cancer cells disseminate from the primary tumor site to the skeletal system via the bloodstream or lymphatic system. The emergence of such bone metastases typically heralds a significantly poor prognosis for the patient. This study's primary aim is to develop a machine learning model to identify patients at elevated risk of bone metastasis among those with right-sided colon cancer undergoing complete mesocolonectomy (CME). PATIENTS AND METHODS: The study cohort comprised 1,151 individuals diagnosed with right-sided colon cancer, with a subset of 73 patients presenting with bone metastases originating from the colon. We used univariate and multivariate regression analyses as well as four machine learning algorithms to screen variables for 38 characteristic variables such as patient demographic characteristics and surgical information. The study employed four distinct machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN), to develop the predictive model. Additionally, the model was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA), while Shapley additive explanation (SHAP) was utilized to visualize and analyze the model. RESULTS: The XGBoost algorithm performed the best performance among the four prediction models. In the training set, the XGBoost algorithm had an area under curve (AUC) value of 0.973 (0.953-0.994), an accuracy of 0.925 (0.913-0.936), a sensitivity of 0.921 (0.902-0.940), and a specificity of 0.908 (0.894-0.922). In the validation set, the XGBoost algorithm had an AUC value of 0.922 (0.833-0.995), an accuracy of 0.908 (0.889-0.926), a sensitivity of 0.924 (0.873-0.975), and a specificity of 0.883 (0.810-0.956). Furthermore, the AUC value of 0.83 for the external validation set suggests that the XGBoost prediction model possesses strong extrapolation capabilities. The results of SHAP analysis identified alkaline phosphatase (ALP) levels, tumor size, invasion depth, lymph node metastasis, lung metastasis, and postoperative neutrophil-to-lymphocyte ratio (NLR) levels as significant risk factors for BM from right-sided colon cancer subsequent to CME. CONCLUSION: The prediction model for BM from right-sided colon cancer developed using the XGBoost machine learning algorithm in this study is both highly precise and clinically valuable.

3.
Oncol Rep ; 52(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39239755

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell apoptotic data in Fig. 4 on p. 1389 and the migration and invasion assay data shown in Figs. 6 and 7 on p. 1391 were strikingly similar to data that were submitted for publication at around the same time in different articles written by different authors at different research institutes (several of which have subsequently been retracted). In addition, there appeared to be instances of duplication of the same data within Figs. 7 and 8, where data that were intending to have shown the results from differently performed experiments had apparently been derived from the same original sources. Owing to the fact that the contentious data in the above article had already been submitted for publication elsewhere prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 35: 1385-1394, 2016; DOI: 10.3892/or.2015.4524].

4.
Front Plant Sci ; 15: 1460038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319004

RESUMO

As one of the developed genetically modified (GM) maize varieties in China, CC-2 has demonstrated promising commercial prospects during demonstration planting. The establishment of detection methods is a technical prerequisite for effective supervision and regulation of CC-2 maize. In this study, we have developed an event-specific quantification method that targets the junction region between the exogenous gene and the 5' flanking genomic DNA (gDNA) of CC-2. The accuracy and precision of this method were evaluated across high, medium, and low levels of CC-2 maize content, revealing biases within ±25% and satisfactory precision data. Additionally, we determined the limits of quantification of the method to be 0.05% (equivalent to 20 copies) of the CC-2 maize. A collaborative trial further confirmed that our event-specific method for detecting CC-2 produces reliable, comparable, and reproducible results when applied to five different samples provided by various sources. Furthermore, we calculated the expanded uncertainty associated with determining the content level of CC-2 in these samples.

5.
Int J Biol Macromol ; : 135999, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326614

RESUMO

In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.

6.
ACS Appl Mater Interfaces ; 16(38): 50870-50878, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269917

RESUMO

Copper phenylacetylide (PACu) is a promising photocatalyst due to its unique copper ladder (CL) electron transport channel, which facilitates efficient charge transfer. However, the structure-activity relationship between the CL spacing and its catalytic performance has yet to be revealed. In this study, we skillfully selected multiple substituents to regulate the CL spacing of the PACu photocatalyst. Our findings indicate that reducing the CL spacing significantly enhances carrier separation and transport efficiency, leading to improved oxygen adsorption and activation. Specifically, PACu-F demonstrated superior photocatalytic activity, achieving a 99% conversion rate in benzylamine oxidation and maintaining an excellent stability over multiple cycles. This study confirms the feasibility of tuning the CL spacing in PACu using donor/acceptor substituents to achieve a high-efficiency photocatalytic performance, offering crucial insights into the rational design of advanced photocatalysts.

7.
Front Hum Neurosci ; 18: 1387299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314267

RESUMO

Background: The fronto-cerebellar functional network has been proposed to subserve cognitive processing speed. This study aims to elucidate how the long-range frontal-to-cerebellar effective connectivity contributes to faster speed. Methods: In total, 60 healthy participants were randomly allocated to three five-daily sessions of transcranial magnetic stimulation conditions, namely intermittent theta-burst stimulation (iTBS, excitatory), continuous theta-burst stimulation (CTBS, inhibitory), or a sham condition. The sites of the stimulations were the right pre-supplementary motor area (RpSMA), medial cerebellar vermis VI (MCV6), and vertex, respectively. Performances in two reaction time tasks were recorded at different time points. Results: Post-stimulation speeds revealed marginal decreases in the simple but not complex task. Nevertheless, participants in the excitatory RpSMA and inhibitory MCV6 conditions showed direct and negative path effects on faster speeds compared to the sham condition in the simple reaction time (SRT) task (ß = -0.320, p = 0.045 and ß = -0.414, p = 0.007, respectively). These path effects were not observed in the SDMT task. Discussion: RpSMA and MCV6 were involved in promoting the path effects of faster reaction times on simple cognitive task. This study offers further evidence to support their roles within the long-range frontal-to-cerebellar connectivity subserving cognitive processing speed. The enhancement effects, however, are likely limited to simple rather than complex mental operations.

8.
Biomed Pharmacother ; 180: 117481, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39316971

RESUMO

Triptolide (TP), a diterpene from Tripterygium wilfordii, exhibits potent anti-inflammatory, immunomodulatory, and antitumor properties but is limited by severe hepatotoxicity. This study investigates sex differences in TP-induced liver injury and the protective role of estradiol (E2) in modulating macrophage-mediated inflammation and hepatocyte function. An acute liver injury model was established in male and female Balb/c mice using intraperitoneal TP injection. Liver function tests, histological analyses, and immunohistochemical staining were performed. THP-1 macrophage and various liver cell lines were used to study the effects of TP and E2 in vitro. Virtual screening, molecular docking, luciferase assays, and qPCR were employed to identify potential targets and elucidate underlying mechanisms. TP caused more severe liver injury in female mice, evidenced by increased liver indices, aspartate aminotransferase (AST) levels, and extensive hepatocyte damage. TP promoted M1 macrophage polarization, enhancing inflammation, particularly in female mice. E2 mitigated TP-induced inflammatory responses by downregulating pro-inflammatory cytokines and macrophage activation markers. Molecular docking and functional assays identified Nuclear receptor subfamily 1 group I member 2 (NR1I2) as a key target mediating the protective effects of E2. The study highlights significant sex differences in TP-induced hepatotoxicity, with females being more susceptible. E2 exerts protective effects against TP-induced liver injury by modulating immune responses, presenting a potential therapeutic approach to mitigate drug-induced liver injury (DILI). Further research on NR1I2 could lead to targeted therapies for reducing drug-induced liver damage.

9.
Curr Microbiol ; 81(11): 354, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269482

RESUMO

Amphibians face the threat of decline and extinction, and their health is crucially affected by the microbiota. Their health and ecological adaptability essentially depend on the diverse microbial communities that are shaped by unique host traits and environmental factors. However, there is still limited research on this topic. In this study, cutaneous (C) and gut (G) microbiota in Rana amurensis (A) and R. dybowskii (D) was analyzed through 16S amplicon sequencing. Groups AC and DC significantly differed in alpha diversity, while the gut groups (AG and DG) showed no such differences. Analyses of Bray-Curtis dissimilarity matrix and unweighted UniFrac distances showed significant differences in cutaneous microbiota between groups AC and DC, but not between groups AG and DG. Stochastic processes significantly influenced the assembly of cutaneous and gut microbiota in amphibians, with a notably higher species dispersal rate in the gut. The predominant phyla in the skin of R. amurensis and R. dybowskii were Bacteroidetes and Proteobacteria, respectively, with significant variations in Bacteroidota. Contrarily, the gut microbiota of both species was dominated by Firmicutes, Proteobacteria, and Bacteroidetes, without significant phylum-level differences. Linear discriminant analysis effect size (LEfSe) analysis identified distinct microbial enrichment in each group. Predictive analysis using phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) revealed the significant functional pathways associated with the microbiota, which indicates their potential roles in immune system function, development, regeneration, and response to infectious diseases. This research underscores the critical impact of both host and environmental factors in shaping amphibian microbial ecosystems and emphasizes the need for further studies to explore these complex interactions for conservation efforts.


Assuntos
Bactérias , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Ranidae , Pele , Animais , Pele/microbiologia , Ranidae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota , Biodiversidade
10.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223509

RESUMO

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Glicemia , Proteínas de Transporte , Diabetes Mellitus Experimental , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas de Transporte/metabolismo , Glicemia/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fosforilação , Função Ventricular Esquerda/efeitos dos fármacos , Tiorredoxinas/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Proteômica , Ratos , Mapas de Interação de Proteínas , Proteínas de Ciclo Celular
11.
Biomaterials ; 314: 122820, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39277948

RESUMO

Ferroptosis has been recognized as a promising therapeutic strategy for cancer due to its unique mechanism of action. However, the upregulation of stearoyl-CoA desaturase 1 (SCD1) in ovarian cancer leads to resistance to ferroptotic therapy. Zinc ion (Zn2+) serves as the cofactor of SCD1. It was hypothesized that selective deprivation of Zn2+ from SCD1 could sensitize ferroptotic ovarian cancer therapy. Here, we report a hypoxia-responsive polymer micelle for enhanced ferroptosis of ovarian cancer cells. A SCD1 inhibitor, PluriSIn 1 (Plu), and a ferroptosis inducer, Auranofin (Aur), were co-encapsulated in nitroimidazole-bearing micelles. Under the hypoxic tumor microenvironment, the conversion of nitroimidazole to aminoimidazole triggered the cargo release and induced the depletion of antioxidant molecules (e.g., glutathione, thioredoxin, and NADPH). Meanwhile, because of the strong coordination between aminoimidazole and Zn2+ compared to that of histidine and Zn2+, such conversion can deprive the metal cofactor of SCD1, hence sensitizing the action of Plu and Aur. The proof-of-concept was demonstrated in cell and animal models with minimal systemic toxicity. The current work integrates ferroptosis induction with SCD1 inhibition in a hypoxia-responsive vehicle, offering a promising strategy for addressing the ferroptosis resistance and opening novel avenues for managing the difficult-to-treat ovarian cancer.

13.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273382

RESUMO

The identification of odorant-binding proteins (OBPs) involved in host location by Oides leucomelaena (O. leucomelaena Weise, 1922, Coleoptera, Galerucinae) is significant for its biological control. Tools in the NCBI database were used to compare and analyze the transcriptome sequences of O. leucomelaena with OBP and other chemosensory-related proteins of other Coleoptera insects. Subsequently, MEGA7 was utilized for OBP sequence alignment and the construction of a phylogenetic tree, combined with expression profiling to screen for candidate antennae-specific OBPs. In addition, fumigation experiments with star anise volatiles were conducted to assess the antennae specificity of the candidate OBPs. Finally, molecular docking was employed to speculate on the binding potential of antennae-specific OBPs with star anise volatiles. The study identified 42 candidate OBPs, 8 chemosensory proteins and 27 receptors. OleuOBP3, OleuOBP5, and OleuOBP6 were identified as classic OBP family members specific to the antennae, which was confirmed by volatile fumigation experiments. Molecular docking ultimately clarified that OleuOBP3, OleuOBP5, and OleuOBP6 all exhibit a high affinity for ß-caryophyllene among the star anise volatiles. We successfully obtained three antennae-specific OBPs from O. leucomelaena and determined their high-affinity volatiles, providing a theoretical basis for the development of attractants in subsequent stages.


Assuntos
Besouros , Proteínas de Insetos , Simulação de Acoplamento Molecular , Filogenia , Receptores Odorantes , Receptores Odorantes/genética , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Besouros/genética , Besouros/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Comportamento Animal/efeitos dos fármacos
14.
Poult Sci ; 103(10): 104139, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127007

RESUMO

The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.


Assuntos
Galinhas , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Galinhas/genética , Galinhas/fisiologia , Sequenciamento Completo do Genoma/veterinária , Termotolerância/genética , Adaptação Fisiológica/genética
15.
Int J Biol Macromol ; 277(Pt 3): 134450, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098690

RESUMO

Algal polysaccharide is an important food functional factor with diverse bioactive and low toxicity. Previous studies have confirmed Caulerpa chemnitzia polysaccharides (CRVP) have immunomodulatory activity, but the immunomodulatory mechanism of CRVP in macrophages has not been thoroughly explored yet. In our research, we found that CRVP has outstanding immunomodulatory activity in macrophages, which is reflected in promoting cell proliferation, upregulating cytokines (IL-1ß, IL-6, and TNF-α) expression, and increasing NO and ROS levels. Additionally, the result of joint analysis of untargeted metabolomics showed metabolism played a major role in the immunomodulatory of CRVP and suggested succinic acid was a key metabolite. Further verification indicated that the accumulation of succinic acid in macrophages after administered with CRVP, induced the down-regulation of prolyl hydroxylase domain 2 (PHD2) and up-regulation of hypoxia-inducible factor-1α (HIF-1α), thereby enhancing IL-1ß expression. Together, the immunomodulatory activity of CRVP in macrophages via succinate/PHD2/HIF-1α/IL-1ß pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-1beta , Macrófagos , Polissacarídeos , Transdução de Sinais , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Óxido Nítrico/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Succínico/farmacologia
16.
Sci Total Environ ; 951: 175641, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168336

RESUMO

The extensive use of the antibiotic oxytetracycline (OTC) has led to considerable environmental contamination and other negative impacts, prompting an urgent need for a green, effective, and innovative OTC adsorption material. In this study, diatom-allophane bio-nanocomposites were synthesized using a simple and eco-friendly method, yielding a homogeneous coating of allophane nanoparticles on diatom surfaces. The resultant bio-nanocomposites were found to have hierarchically porous structures and abundant active sites derived from successful allophane loading and dispersion on diatom surfaces. The OTC adsorption capacity of this novel adsorbent is remarkable (219.112 mg·g-1), surpassing the capacities of raw allophane and diatoms by >5 and 10 times, respectively. Mechanistically, OTC adsorption by the bio-nanocomposites was found to be driven primarily by chemisorption through a process involving complexation between the amide and amino groups on OTC and the aluminum hydroxyl and carboxyl groups on the adsorbent surface. Electrostatic interactions and hydrogen bonding also contribute significantly to OTC capture. Furthermore, the diatom-allophane bio-nanocomposites exhibit excellent performance over a wide pH range (4-7), in the presence of various cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, NO3-, SO42-), and in real water bodies. These findings demonstrate the potential of the diatom-allophane bio-nanocomposite as a green, efficient, and promising biological-mineral adsorbent for environmental remediation, leveraging the combined utilization of biological and mineral resources.


Assuntos
Diatomáceas , Nanocompostos , Oxitetraciclina , Poluentes Químicos da Água , Oxitetraciclina/química , Adsorção , Poluentes Químicos da Água/química , Nanocompostos/química , Antibacterianos/química , Química Verde
17.
Nanoscale ; 16(36): 17118-17125, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39189698

RESUMO

Bacteria are becoming an increasingly serious threat to human health. The emergence of super bacteria makes clinical treatment more difficult. Vaccines are one of the most effective means of preventing and treating bacterial infections. As a new class of vaccines, killed but metabolically active (KBMA) vaccines provide the immunogenicity of live vaccines and the safety of inactivated vaccines. Herein, a promising strategy is proposed to improve the stability and immunogenicity of KBMA vaccines. KBMA vaccines were produced at low temperature (4 °C), and the bacterial surface was engineered using mesoporous silica nanoparticle (MSN) coating. Compared to vaccines prepared at room temperature, the metabolic activity of KBMA vaccines prepared at 4 °C remarkably improved. Benefiting from the induction of MSNs, the stability of KBMA vaccines was increased and the preservation time was prolonged at 4 °C. Meanwhile, metabolomics analysis showed that the metabolite spectrum of live bacteria changed after photochemical treatment and MSN coating, which interfered with organic acid metabolism pathways, lipid metabolism and biosynthesis of secondary metabolites. Furthermore, the immune response in the mice treated with KBMA/MSN vaccines was similar to that in those treated with live vaccines and stronger than that in those treated with inactivated vaccines. In comparison with the control group, bacteria tissue burdens of KBMA/MSN group were significantly reduced. CD4+ T cells dominated immune responses for the protection of mice. Thus, the current work promotes the application of KBMA vaccines, providing an alternative choice for treating bacterial infections.


Assuntos
Nanopartículas , Dióxido de Silício , Vacinas de Produtos Inativados , Animais , Nanopartículas/química , Camundongos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/química , Dióxido de Silício/química , Feminino , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Camundongos Endogâmicos BALB C , Temperatura Baixa , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo
18.
Pest Manag Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105535

RESUMO

BACKGROUND: Chinese sprangletop [Leptochloa chinensis (L.) Nees] control is threatened by resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. In this study, a L. chinensis population, HFLJ18, that survived cyhalofop-butyl [aryloxyphenoxypropionate (APP) herbicide, CyB] treatment was collected from a rice field in Lujiang County, Anhui Province, China. This study aimed to evaluate the susceptibility of HFLJ18 to herbicides with different modes-of-action and investigate the potential mechanisms of resistance to CyB. RESULTS: The HFLJ18 population exhibited high levels of resistance to CyB (10.92-fold) and showed resistance to the ACCase inhibitors metamifop (4.63-fold) and fenoxaprop-P-ethyl (8.39-fold), but was susceptible to clethodim, pinoxaden, florpyrauxifen-benzyl, oxadiazon and pretilachlor. Target gene sequencing revealed a novel Trp-to-Gly substitution at codon position 2027 of ACCase in the resistant plants. Molecular docking revealed that the spatial structure of ACCase changed significantly following the substitution, as indicated by reduced H-bonds. A newly derived cleaved amplified polymorphic sequence (dCAPS) marker was subsequently developed to detect the Trp-2027-Gly mutation in the ACCase of L. chinensis. Additionally, pretreatment with the cytochrome P450 (P450) inhibitor piperonyl butoxide (PBO) and the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) did not reverse resistance to CyB, suggesting that nontarget-site resistance mechanisms were not involved in CyB resistance in the HFLJ18 population. CONCLUSION: Overall, the resistance to CyB in the HFLJ18 population derived from the mutation of ACCase gene, and to the best of our knowledge, this is the first report of the ACCase Trp-2027-Gly mutation conferring resistance to ACCase-inhibiting herbicides in grass species. © 2024 Society of Chemical Industry.

19.
J Colloid Interface Sci ; 677(Pt B): 68-78, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137564

RESUMO

Nickel-iron layered double hydroxide (NiFe-LDH) is hindered in its further development in water splitting due to its slow kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, the synthesis of OER (FeO(OH)/NiFe-LDH) and HER (Fe7S8(NiS)/NiFe-LDH) catalysts endowed with inherent electric fields exhibited exceptional electrocatalytic properties. The presence of the built-in electric field modulated the redistribution of electrons within the catalyst, while the formation of a heterostructure preserved the intrinsic characteristics of the catalyst. Moreover, this electron redistribution optimized the catalyst's adsorption of reaction intermediates (O*, OH*, OOH*, and H*) during the catalytic process, thereby enhancing the performance of both OER and HER. The electrolytic cell, equipped with these catalysts, achieved the current density of 10 mA cm-2 at a remarkably low potential of 1.409 V under industrial temperature conditions and demonstrated an ultra-long-term stability of 200 h.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39113388

RESUMO

Mounting studies have shown that the oncoproteins E6 and E7 encoded by the human papillomavirus (HPV) genome are essential in HPV-induced cervical cancer (CC). Ca2+ binding protein 1 (CABP1), a downstream target of HPV18-positive HeLa cells that interferes with E6/E7 expression, was identified through screening the GEO Database (GSE6926). It was confirmed to be down-regulated in CC through TCGA prediction and in vitro detection. Subsequent in vitro experiments revealed that knocking down E6/E7 inhibited cell proliferation, migration, and invasion, whereas knocking down CABP1 promoted these processes. Simultaneously knocking down CABP1 reversed these effects. Additionally, the results were validated in vivo. Previous studies have indicated that CABP1 can regulate Ca2+ channels, influencing Ca2+ influx and tumor progression. In this study, it was observed that knocking down CABP1 enhanced Ca2+ inflow, as demonstrated by flow cytometry and confocal microscopy. Knocking down E6/E7 inhibited these processes, whereas simultaneously knocking down E6/E7 and CABP1 restored the inhibitory effect of knocking down E6/E7 on Ca2+ inflow. To further elucidate that E6/E7 promotes CC progression by inhibiting CABP1 expression and activating Ca2+ influx, BAPTA/AM treatment was administered during CABP1 knockdown. It was discovered that Ca2+ chelation could reverse the effect of CABP1 knockdown on CC cells. In conclusion, our results offer a novel target for the diagnosis and treatment of HPV-induced CC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...