Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025463

RESUMO

Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.

2.
Int Immunopharmacol ; 126: 111183, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984250

RESUMO

Once an ischemic stroke occurs, reactive oxygen species (ROS) and oxidative stress degrade the tight connections between cerebral endothelial cells resulting in their damage. The expression of antioxidant genes may be enhanced, and ROS formation may be reduced following Nrf2 activation, which is associated with protection against ischemic stroke. Overexpression of spermine oxidase (Smox) in the neocortex led to increased H2O2 production. However, how Smox impacts the regulation of the blood-brain barrier (BBB) through antioxidants has not been examined yet. We conducted experiments both in the cell level and in the transient middle cerebral artery occlusion (tMCAO) model to evaluate the effect of Smox siRNA lentivirus (si-Smox) knockdown on BBB protection against ischemic stroke. Mice treated with si-Smox showed remarkably decreased BBB breakdown and reduced endothelial inflammation following stroke. The treatment with si-Smox significantly elevated the Bcl-2 to Bax ratio and decreased the production of cleaved caspase-3 in the tMCAO model. Further investigation revealed that the neuroprotective effect was the result of the antioxidant properties of si-Smox, which reduced oxidative stress and enhanced CD31+ cells in the peri-infarct cortical areas. Of significance, si-Smox activated Nrf2 in both bEnd.3 cells and tMCAO animals, and blocking Nrf2 with brusatol diminished the protective effects of si-Smox. The study findings suggest that si-Smox exerts neuroprotective effects and promotes angiogenesis by activating the Nrf2 pathway, thus decreasing oxidative stress and apoptosis caused by tMCAO. As a result, si-Smox may hold potential as a therapeutic candidate for preserving BBB integrity while treating ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
3.
Antiviral Res ; 215: 105621, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156267

RESUMO

Group B Coxsackieviruses (CVB) are non-enveloped small RNA viruses in the genus Enterovirus, family Picornaviridae. CVB infection causes diverse conditions from common cold to myocarditis, encephalitis, and pancreatitis. No specific antiviral is available for the treatment of CVB infection. Anisomycin, a pyrrolidine-containing antibiotic and translation inhibitor, was reported to inhibit the replication of some picornaviruses. However, it is unknown if anisomycin can act as an antiviral against CVB infection. Here we observed that anisomycin showed potent inhibition on CVB type 3 (CVB3) infection with negligible cytotoxicity when applied at the early stage of virus infection. Mice infected with CVB3 showed markedly alleviated myocarditis with reduced viral replication. We found that CVB3 infection significantly increased the transcription of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1). CVB3 replication was suppressed by EEF1A1 knockdown, while elevated by EEF1A1 overexpression. Similar to the effect of CVB3 infection, EEF1A1 transcription was increased in response to anisomycin treatment. However, eEF1A1 protein level was decreased with anisomycin treatment in a dose-dependent manner in CVB3-infected cells. Moreover, anisomycin promoted eEF1A1 degradation, which was inhibited by the treatment of chloroquine but not MG132. We demonstrated that eEF1A1 interacted with the heat shock cognate protein 70 (HSP70), and eEF1A1 degradation was inhibited by LAMP2A knockdown, implicating that eEF1A1 is degraded through chaperone-mediated autophagy. Taken together, we demonstrated that anisomycin, which inhibits CVB replication through promoting the lysosomal degradation of eEF1A1, could be a potential antiviral candidate for the treatment of CVB infection.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Humanos , Anisomicina/farmacologia , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Antivirais/farmacologia , Antivirais/metabolismo , Enterovirus Humano B , Lisossomos/metabolismo , Replicação Viral , Infecções por Coxsackievirus/tratamento farmacológico , Células HeLa
4.
Antimicrob Agents Chemother ; 67(3): e0086822, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36786598

RESUMO

Enterovirus infections are life-threatening viral infections which occur mainly among children and are possible causes of viral outbreak. Until now, treatment and management of infections caused by members of the genus Enterovirus largely depended on supportive care, and no antiviral medications are currently approved for the treatment of most of these infections. The urgency of discovering new therapeutic options for the treatment of enterovirus infection is increasing. In the present study, we identified that trans-2-hexenoic acid (THA), a natural product from a dietary source, possesses antiviral activity against coxsackievirus B (CVB) and enterovirus A71 (EV-A71) in a dose-dependent manner. We found that THA possesses antiviral activity at 50% effective concentrations (EC50) of 2.9 µM and 3.21 µM against CVB3 and EV-A71 infections, respectively. The time of addition assay revealed that THA inhibits both CVB3 and EV-A71 replication at the entry stage of infection. Additional results from this study further suggest that THA inhibits viral replication by blocking viral entry. Given that THA has received approval as a food additive, treatment of enterovirus infections with THA might be a safe therapeutic option or could pave the way for semisynthetic manufacturing of more antiviral drugs in the future.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Criança , Humanos , Antivirais/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Replicação Viral
5.
Front Immunol ; 13: 933594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439191

RESUMO

Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy without any effective preventive measures; therefore, it is necessary to develop a safe and efficacious vaccine against CVB. Immunoinformatics methods are both economical and convenient as in-silico simulations can shorten the development time. Herein, we design a novel multi-epitope vaccine for the prevention of CVB by using immunoinformatics methods. With the help of advanced immunoinformatics approaches, we predicted different B-cell, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes, respectively. Subsequently, we constructed the multi-epitope vaccine by fusing all conserved epitopes with appropriate linkers and adjuvants. The final vaccine was found to be antigenic, non-allergenic, and stable. The 3D structure of the vaccine was then predicted, refined, and evaluated. Molecular docking and dynamics simulation were performed to reveal the interactions between the vaccine with the immune receptors MHC-I, MHC-II, TLR3, and TLR4. Finally, to ensure the complete expression of the vaccine protein, the sequence of the designed vaccine was optimized and further performed in-silico cloning. In conclusion, the molecule designed in this study could be considered a potential vaccine against CVB infection and needed further experiments to evaluate its safety and efficacy.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Vacinas de Subunidades Antigênicas , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
6.
Front Microbiol ; 13: 975223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147837

RESUMO

Coxsackievirus B (CVB), a member of Enterovirus genus of Picornaviridae, is the leading pathogen of viral myocarditis and dilated cardiomyopathy. The pathogenesis of CVB-induced myocarditis has not been completely elucidated, and no specific antiviral measurement is available presently. Circular RNAs (circRNAs) have been reported to be able to modulate viral replication and infection through bridging over non-coding RNAs (ncRNAs) and coding messenger RNAs (mRNAs). To date, the role of circRNAs in CVB infection is largely unknown. In this study, we found that hsa_circ_0076631 (circ_0076631) significantly promoted CVB type 3 (CVB3) replication. Further study showed that the underneath mechanism was circ_0076631 indirectly interacting with CVB3 through sponging miR-214-3p, which targeted the 3D-coding region of CVB3 genome to suppress viral translation. Knocking down circ-0076631 caused a suppression of CVB3 infection; thus, circ-0076631 may be a potential target for anti-CVB therapy.

7.
Front Microbiol ; 13: 875485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495645

RESUMO

Coxsackievirus group B (CVB) is a member of the genus Enterovirus in the family Picornaviridae. CVB infection has been implicated as a major etiologic agent of viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis among children and young adults. Until date, no antiviral agent has been licensed for the treatment of Coxsackievirus infection. In an effort to identify antiviral agents against diseases caused by the CVB, we found that ethyl 3-hydroxyhexanoate (EHX), a volatile compound present in fruits and food additives, is a potent antiviral compound. In this study, we demonstrated that EHX treatment significantly inhibits CVB replication both in vivo and in vitro. Furthermore, EHX possesses antiviral activity at 50% effective concentration (EC50) of 1.2 µM and 50% cytotoxicity (CC50) of 25.6 µM, yielding a selective index (SI) value as high as 20.8. Insights into the mechanism of antiviral activity of EHX showed that it acts at the step of viral RNA replication. Since EHX has received approval as food additives, treatment of CVB-related infections with EHX might be a safe therapeutic option and may be a promising strategy for the development of semi-synthetic antiviral drugs for viral diseases.

8.
Biochem Biophys Res Commun ; 605: 119-126, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316762

RESUMO

Myocardial ischemia/reperfusion (I/R) injury poses a significant threat to human health. High level of reactive oxygen species (ROS) and calcium overload are the foremost causes of myocardial damage in I/R. Sulforaphane (SFN) is known for its promising antioxidant effect. Whether or not SFN has myocardial protective effect against I/R is largely unknown. This study aimed to investigate if SFN can protect myocardium from I/R injury. We found that mice or cells pre-treated with SFN showed improved cardiac functions and cell survival. SFN treatment inhibited the production of inflammatory cytokines and the increase of intracellular calcium induced by hypoxia-reperfusion (H/R), while mitochondria membrane potential was effectively maintained. Transcriptome analysis showed that CaMKIIδ expression was down-regulated by SFN treatment in I/R myocardium, while CaMKIIN2, the inhibitor of CaMKII, was upregulated. Knockdown of CaMKIIN2 not only led to increased level of total CaMKIIδ and the phosphorylated CaMKIIδ but also blocked the pro-survival effect of SFN for H/R cells. Moreover, CaMKIIN2 overexpression was sufficient to suppress CaMKIIδ activation and improve cell survival under H/R. Taken together, this study demonstrated that SFN exerts cardioprotective effect toward I/R injury through upregulating CaMKIIN2 and down-regulating CaMKIIδ.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isotiocianatos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sulfóxidos
9.
Front Oncol ; 11: 633794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646755

RESUMO

Human papillomavirus (HPV) is a double-stranded DNA (dsDNA) virus, and its high-risk subtypes increase cancer risks. However, the mechanism of HPV infection and pathogenesis still remain unclear. Therefore, understanding the molecular mechanisms and the pathogenesis of HPV are crucial in the prevention of HPV-related cancers. In this study, we analyzed cervix squamous cell carcinoma (CESC) and head and neck carcinoma (HNSC) combined data to investigate various HPV-induced cancer common features. We showed that epidermal growth factor receptor (EGFR) was downregulated in HPV-positive (HPV+) cancer, and that HPV+ cancer patients exhibited better prognosis than HPV-negative (HPV-) cancer patients. Our study also showed that TP53 mutation rate is lower in HPV+ cancer than in HPV- cancer and that TP53 can be modulated by HPV E7 protein. However, there was no significant difference in the expression of wildtype TP53 in both groups. Subsequently, we constructed HPV-human interaction network and found that EGFR is a critical factor. From the network, we also noticed that EGFR is regulated by HPV E7 protein and hsa-miR-944. Moreover, while phosphorylated EGFR is associated with a worse prognosis, EGFR total express level is not significantly correlated with prognosis. This indicates that EGFR activation will induce a worse outcome in HPV+ cancer patients. Further enrichment analysis showed that EGFR downstream pathway and cancer relative pathway are diversely activated in HPV+ cancer and HPV- cancer. In summary, HPV E7 protein downregulates EGFR that downregulates phosphorylated EGFR and inhibit EGFR-related pathways which in turn and consequently induce better prognosis.

10.
Virol Sin ; 36(1): 95-103, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32696397

RESUMO

Enterovirus A71 (EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease (HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3C between the residues 331Q and 332S, while mutated TDP-43 (Q331A) was not cleaved. In addition, mutated 3C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2A rather than 3C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Proteínas de Ligação a DNA/genética , Enterovirus , Humanos , Peptídeo Hidrolases
11.
Antiviral Res ; 179: 104699, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31883926

RESUMO

Viral myocarditis caused by Coxsackievirus B (CVB) infection is a severe inflammatory disease of the myocardium, which may develop to cardiomyopathy and heart failure. No effective specific treatment is available. Our previous study demonstrated that suppression of proinflammatory caspase-1 activation effectively inhibited CVB replication. N-acetyl cysteine (NAC) is a widely used antioxidant. In this study, we found that NAC significantly alleviated the myocardial injury caused by CVB type 3 (CVB3) under in vivo condition. Importantly, NAC treatment simultaneously suppressed viral replication and inflammatory response in both myocardium and cell culture. The antiviral and anti-inflammation mechanism of NAC, while independent of its antioxidant property, relies on its inhibition on caspase-1 activation. Moreover, NAC promotes procaspase-1 degradation via ubiquitin proteasome system, which further contributes to caspase-1 down-regulation. NAC also inhibits the activity of viral proteases. Taken together, this study shows that NAC exerts potent anti-CVB and anti-inflammation effect through targeting caspase-1. Given that NAC is a clinically approved medicine, we recommend NAC as a valuable therapeutic agent for viral myocarditis caused by CVB.


Assuntos
Acetilcisteína/uso terapêutico , Antivirais/uso terapêutico , Infecções por Coxsackievirus/tratamento farmacológico , Miocardite/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Inibidores de Caspase/uso terapêutico , Infecções por Coxsackievirus/complicações , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/fisiologia , Células HeLa , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Camundongos Endogâmicos BALB C , Miocardite/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Organismos Livres de Patógenos Específicos
12.
RNA ; 26(1): 91-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676570

RESUMO

Coxsackievirus B (CVB) is the major cause of human myocarditis and dilated cardiomyopathy. Toll-like receptor 3 (TLR3) is an intracellular sensor to detect pathogen's dsRNA. TLR3, along with TRAF6, triggers an inflammatory response through NF-κB signaling pathway. In the cells infected with CVB type 3 (CVB3), the abundance of miR-146a was significantly increased. The role of miR-146a in CVB infection is unclear. In this study, TLR3 and TRAF6 were identified as the targets of miR-146a. The elevated miR-146a inhibited NF-κB translocation and subsequently down-regulated proinflammatory cytokine expression in the CVB3-infected cells. Therefore, the NF-κB pathway can be doubly blocked by miR-146a through targeting of TLR3 and TRAF6. MiR-146a may be a negative regulator on inflammatory response and an intrinsic protective factor in CVB infection.


Assuntos
Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Animais , Infecções por Coxsackievirus/virologia , Citocinas/metabolismo , Regulação para Baixo , Enterovirus Humano B/genética , Fibroblastos/imunologia , Células HeLa , Humanos , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 3 Toll-Like/genética
13.
Virol Sin ; 34(6): 618-630, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31388922

RESUMO

The roles of lncRNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3 (CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lncRNAs in enterovirus infection. We profiled lncRNAs and mRNA expression in CVB3-infected HeLa cells by lncRNA-mRNA integrated microarrays. As a result, 700 differentially expressed lncRNAs (431 up-regulated and 269 down-regulated) and 665 differentially expressed mRNAs (299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lncRNA-mRNA integrated pathway analysis to identify potential functional impacts of the differentially expressed mRNAs, in which lncRNA-mRNA correlation network was built. According to lncRNA-mRNA correlation, we found that XLOC-001188, an lncRNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 mRNA, an anti-CVB3 gene reported previously. This interaction was supported by qPCR detection following siRNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 mRNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lncRNAs, SNHG11, RP11-145F16.2, RP11-1023L17.1 and RP11-1021N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2BP1. In all, our studies reveal the alteration of lncRNA expression in CVB3 infection and its potential influence on CVB3 replication, providing useful information for future studies of enterovirus infection.


Assuntos
Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Replicação Viral
14.
Front Microbiol ; 10: 1633, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379784

RESUMO

Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection.

15.
Antiviral Res ; 166: 1-10, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30904424

RESUMO

Coxsackievirus group B (CVB) is considered as one of the most common pathogens of human viral myocarditis. CVB-induced myocarditis is mainly characterized by the persistence of the virus infection and immune-mediated inflammatory injury. Costimulatory signals are crucial for the activation of adaptive immunity. Our data reveal that the CVB type 3 (CVB3) infection altered the expression profile of costimulatory molecules in host cells. CVB3 infection caused the decrease of PD-1 ligand expression, partially due to the cleavage of AU-rich element binding protein AUF1 by the viral protease 3Cpro, leading to the exacerbated inflammatory injury of the myocardium. Moreover, systemic PD-L1 treatment, which augmented the apoptosis of proliferating lymphocytes, alleviated myocardial inflammatory injury. Our findings suggest that PD1-pathway can be a potential immunologic therapeutic target for CVB-induced myocarditis.


Assuntos
Antígeno B7-H1/uso terapêutico , Infecções por Coxsackievirus/imunologia , Inflamação/tratamento farmacológico , Miocardite/virologia , Animais , Apoptose , Antígeno B7-H1/biossíntese , Antígeno B7-H1/metabolismo , Enterovirus Humano B/patogenicidade , Humanos , Inflamação/virologia , Ativação Linfocitária , Camundongos , Miocardite/tratamento farmacológico , Miocardite/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
16.
Virol Sin ; 33(4): 314-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29959686

RESUMO

Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.


Assuntos
Antivirais/metabolismo , Infecções por Coxsackievirus/virologia , Grânulos Citoplasmáticos/metabolismo , Enterovirus Humano B/fisiologia , Proteínas do Capsídeo/biossíntese , DNA Helicases/genética , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Viral/biossíntese , Estresse Fisiológico , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo , Replicação Viral
17.
Oncotarget ; 9(19): 14815-14827, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29599909

RESUMO

Hepatocellular carcinoma (HCC) is one of the common cancers worldwide, especially in developing countries. Although the chronic infections of hepatitis B and C viruses have been established as the etiological factors of HCC, the mechanism for the tumorigenesis and development of HCC is still unclear. The liver-specific microRNA-122 (miR-122), an established tumor-suppressor miRNA, is often down-regulated in HCC, while the underlying mechanism is not well understood. Here we report that the AU-rich element-binding factor AUF1 suppresses the expression of Dicer1, the type III RNase that is required for microRNA maturation, leading to the inhibited biogenesis of miR-122. Overexpression of AUF1 led to the decreased expression of Dicer1 and miR-122, while the level of the miR-122 precursor (pre-miR-122) was increased. On the other hand, siRNA of AUF1 (siAUF1) increased the levels of Dicer1 mRNA and miR-122, but it reduced the abundance of pre-miR-122. Consistent with the reported data, this study demonstrated that AUF1 and Dicer1 showed opposite expression pattern in both human HCC tissues and cell lines. In addition, AUF1 inhibited the expression of Dicer1 by interacting with the 3' untranslated region (3'UTR) and coding region of DICER1 mRNA. Moreover, the knockdown of AUF1 by siRNA altered the expression of other miRNAs and promoted HCC cell death. In conclusion, AUF1 down-regulates the expression miR-122 by interacting with the 3'UTR and coding region of DICER1 mRNA and suppressing Dicer1 expression. The AUF1/Dicer1/miR-122 pathway might play a critical role in the development of HCC.

18.
Sci Rep ; 8(1): 2887, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440739

RESUMO

Enterovirus 71 (EV71) is the primary causative pathogen of hand, foot, and mouth disease (HFMD), affecting children with severe neurological complications. Pyroptosis is a programmed cell death characterized by cell lysis and inflammatory response. Although proinflammatory response has been implicated to play important roles in EV71-caused diseases, the involvement of pyroptosis in the pathogenesis of EV71 is poorly defined. We show that EV71 infection induced caspase-1 activation. Responding to the activation of caspase-1, the expression and secretion of both IL-1ß and IL-18 were increased in EV71-infected cells. The treatment of caspase-1 inhibitor markedly improved the systemic response of the EV71-infected mice. Importantly, caspase-1 inhibitor suppressed EV71 replication in mouse brains. Similarly, pyroptosis was activated by the infection of coxsackievirus B3 (CVB3), an important member of the Enterovirus genus. Caspase-1 activation and the increased expression of IL-18 and NLRP3 were demonstrated in HeLa cells infected with CVB3. Caspase-1 inhibitor also alleviated the overall conditions of virus-infected mice with markedly decreased replication of CVB3 and reduced expression of caspase-1. These results indicate that pyroptosis is involved in the pathogenesis of both EV71 and CVB3 infections, and the treatment of caspase-1 inhibitor is beneficial to the host response during enterovirus infection.


Assuntos
Enterovirus Humano A/fisiologia , Enterovirus Humano B/fisiologia , Piroptose , Replicação Viral , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/virologia , Caspase 1/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Células HeLa , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
19.
Exp Cell Res ; 349(2): 255-263, 2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27793649

RESUMO

Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection.


Assuntos
Autofagossomos/virologia , Enterovirus Humano B , Fibroblastos/virologia , Miocardite/virologia , Miócitos Cardíacos/virologia , Animais , Autofagia/fisiologia , Enterovirus Humano B/fisiologia , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/patologia , Fagossomos/virologia , Replicação Viral/genética
20.
Exp Ther Med ; 12(4): 2220-2226, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698715

RESUMO

Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...