Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Mater Chem B ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011592

RESUMO

Aiming to decrease the recurrence of tumors and achieve patient satisfaction, the elicitation of immunotherapy and its integrated synergistic employment is a bright new direction in oncotherapy, yet an emergently challenging task. In particular, tumor-associated macrophage (TAM) regulation though light-induced photodynamic and photothermal therapy (PDT and PTT) is regarded as a powerful approach, which focuses on the systemic immune system instead of the tumor itself. Herein, this study reports an acceptor-donor-acceptor (A-D-A) aggregation-induced emission luminogen (AIEgen), named TPA-2CN, which was applied as a photosensitizer (PS) and photothermal agent (PTA). Attributed to its A-D-A structure and AIE properties, TPA-2CN exhibits a high molar absorption coefficient and acts as a perfect template in regulating radiative and nonradiative transitions, which mainly utilize excited energy. The generation of type I reactive oxygen promoted its application in hypoxic tumor sites and the combination of hyperpyrexia forcefully induces macrophages to polarize towards the immune response M1 phenotype. In in vitro and in vivo, the successful reversion and reprogramming of the immune microenvironment was impressively proved. This method optimally concentrated immune therapy, PDT and PTT as one and exhibited excellent synergistic therapeutic effects with good biosafety.

2.
Chemosphere ; : 142918, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043273

RESUMO

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.

3.
Bioresour Technol ; 406: 131066, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969240

RESUMO

In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.


Assuntos
Carbono , Desnitrificação , Nitrogênio , Áreas Alagadas , Carbono/metabolismo , Nitrogênio/metabolismo , Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Biodegradação Ambiental , Luz
4.
Front Psychol ; 15: 1384053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863669

RESUMO

Background: Depression is one of the primary global public health issues, and there has been a dramatic increase in depression levels among young people over the past decade. The neuroplasticity theory of depression postulates that a malfunction in neural plasticity, which is responsible for learning, memory, and adaptive behavior, is the primary source of the disorder's clinical manifestations. Nevertheless, the impact of depression symptoms on associative learning remains underexplored. Methods: We used the differential fear conditioning paradigm to investigate the effects of depressive symptoms on fear acquisition and extinction learning. Skin conductance response (SCR) is an objective evaluation indicator, and ratings of nervousness, likeability, and unconditioned stimuli (US) expectancy are subjective evaluation indicators. In addition, we used associability generated by a computational reinforcement learning model to characterize the skin conductance response. Results: The findings indicate that individuals with depressive symptoms exhibited significant impairment in fear acquisition learning compared to those without depressive symptoms based on the results of the skin conductance response. Moreover, in the discrimination fear learning task, the skin conductance response was positively correlated with associability, as estimated by the hybrid model in the group without depressive symptoms. Additionally, the likeability rating scores improved post-extinction learning in the group without depressive symptoms, and no such increase was observed in the group with depressive symptoms. Conclusion: The study highlights that individuals with pronounced depressive symptoms exhibit impaired fear acquisition and extinction learning, suggesting a possible deficit in associative learning. Employing the hybrid model to analyze the learning process offers a deeper insight into the associative learning processes of humans, thus allowing for improved comprehension and treatment of these mental health problems.

5.
Math Biosci ; 374: 109222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830572

RESUMO

Reaction-diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction-diffusion models: the Schnakenberg model and the Gray-Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.


Assuntos
Modelos Biológicos , Conceitos Matemáticos , Simulação por Computador , Difusão
6.
Bio Protoc ; 14(6): e4956, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38841289

RESUMO

Erwinia persicina is a gram-negative bacterium that causes diseases in plants. Recently, E. persicina BST187 was shown to exhibit broad-spectrum antibacterial activity due to its inhibitory effects on bacterial acetyl-CoA carboxylase, demonstrating promising potential as a biological control agent. However, the lack of suitable genetic manipulation techniques limits its exploitation and industrial application. Here, we developed an efficient transformation system for E. persicina. Using pET28a as the starting vector, the expression cassette of the red fluorescent protein-encoding gene with the strong promoter J23119 was constructed and transformed into BST187 competent cells to verify the overexpression system. Moreover, suicide plasmid-mediated genome editing systems was developed, and lacZ was knocked out of BST187 genome by parental conjugation transfer using the recombinant suicide vector pKNOCK-sacB-km-lacZ. Therefore, both the transformation and suicide plasmid-mediated genome editing system will greatly facilitate genetic manipulations in E. persicina and promote its development and application. Key features • Our studies establish a genetic manipulation system for Erwinia persicina, providing a versatile tool for studying the gene function of non-model microorganisms. • Requires approximately 6-10 days to complete modification of a chromosome locus.

7.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

8.
Mol Cancer Ther ; : OF1-OF11, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853423

RESUMO

The aberrant activation of FGFR acts as a potent driver of multiple types of human cancers. Despite the development of several conventional small-molecular FGFR inhibitors, their clinical efficacy is largely compromised because of low selectivity and side effects. In this study, we report the selective FGFR1/2-targeting proteolysis-targeting chimera BR-cpd7 that displays significant isoform specificity to FGFR1/2 with half maximal degradation concentration values around 10 nmol/L while sparing FGFR3. The following mechanistic investigation reveals the reduced FGFR signaling, through which BR-cpd7 induces cell-cycle arrest and consequently blocks the proliferation of multiple FGFR1/2-dependent tumor cells. Importantly, BR-cpd7 has almost no antiproliferative activity against cancer cells without FGFR aberrations, furtherly supporting its selectivity. In vivo, BR-cpd7 exhibits robust antitumor effects in FGFR1-dependent lung cancer at well-tolerated dose schedules, accompanied by complete FGFR1 depletion. Overall, we identify BR-cpd7 as a promising candidate for developing a selective FGFR1/2-targeted agent, thereby offering a new therapeutic strategy for human cancers in which FGFR1/2 plays a critical role.

9.
Fitoterapia ; 176: 106045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823597

RESUMO

Notoginseng leaf triterpenes (PNGL), derived from the dried stems and leaves of P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in vivo and in vitro of ischemic stroke. However, its impact on neurological restoration specifically in relation to angiogenesis following ischemic stroke remains unexplored. The aim of this study was to assess the effects of PNGL on angiogenesis subsequent to ischemic stroke. Male Sprague-Dawley rats were utilized in this study and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, PNGL were administered through intraperitoneal (i.p.) injection. The high-performance liquid chromatography (HPLC) fingerprinting, triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, network pharmacology and western blot analyses were assessed to determine the therapeutical effect and molecular mechanisms of PNGL on cerebral ischemia/reperfusion injury. Our findings demonstrate that PNGL effectively reduced infarct volume, enhanced cerebral blood flow, and induced angiogenesis in rats subjected to MCAO/R. Notably, PNGL also facilitated neuronal proliferation and migration in HUMECs in vitro. The proangiogenic effects of PNGL were found to be linked to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis, as well as the activation of neurological function. Our study provides evidence that PNGL hold promise as an active ingredient of inducing proangiogenic effects, potentially through the activation of the Nrf2 pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis. These findings contribute to the understanding of novel mechanisms involved in the restoration of neurological function following PNGL treatment for ischemic stroke.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Panax notoginseng , Folhas de Planta , Ratos Sprague-Dawley , Sirtuína 1 , Triterpenos , Animais , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sirtuína 1/metabolismo , AVC Isquêmico/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Panax notoginseng/química , Folhas de Planta/química , Humanos , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , China , Traumatismo por Reperfusão/tratamento farmacológico , Indutores da Angiogênese/farmacologia , Angiogênese
10.
Wei Sheng Yan Jiu ; 53(3): 472-486, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38839590

RESUMO

OBJECTIVE: To comprehensively analyze the trace nutrient contents in take-away meals, the simultaneous detection method of common vitamins in take-away meals were explored based on the samples' matrix, and the content of trace nutrients in take-away meals was analyzed combined with inductively coupled plasma-mass spectrometry(ICP-MS) detection of common elements. METHODS: Fifty-seven take-away meals were collected randomly and analyzed. Vitamins were determined by high performance liquid chromatography-ultraviolet detector tandem fluorescence detector after pretreatment of samples including enzymatic digestion, hydrolysis and extraction. The separation was performed on a C_(18) column(250 mm×4.6 mm, 5 µm) with ion-pair acid reagents as the mobile phase for water-soluble vitamins and methanol for fat-soluble vitamins. Vitamin B_1, vitamin B_2, nicotinic acid, nicotinamide and vitamin A were detected by ultraviolet detector(UVD), while vitamin B_6 and E by fluorescence detector(FLD). Elemental analysis of calcium, magnesium, sodium, potassium, zinc, selenium and copper in the take-away meals was carried out according to GB 5009.268-2016 by ICP-MS to comprehensively evaluate the contents of micronutrients. RESULTS: Through optimization of chromatography and sample pretreatment conditions, the sensitivity of the established detection method can meet the needs of micronutrient evaluation with the detection limits and quantification limits of vitamins in the range of 0.002-0.098 mg/100 g and 0.007-0.327 mg/100 g, respectively. Good precision was obtained(<10%). The spiked recovery rates were 80.5%-103.8%(n=6). The result showed that the contents of micronutrients in take-away meals were generally low. The detection rates of vitamins ranged from 21.1% to 98.2%. CONCLUSION: The proposed method is simple and sensitive, and the contents of vitamins and elements determined were low in the collected take-away meals.


Assuntos
Micronutrientes , Micronutrientes/análise , Cromatografia Líquida de Alta Pressão/métodos , Vitaminas/análise , Espectrometria de Massas/métodos , Análise de Alimentos/métodos , Oligoelementos/análise , Refeições
11.
Heliyon ; 10(11): e32159, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912487

RESUMO

Background: Bazi Bushen capsule (BZBS) is a Chinese herbal compound that is clinically used to treat fatigue and forgetfulness. However, it is still unclear whether and how BZBS affects heart function decline in menopausal women. This study aimed to examine the effect of BZBS on cardiac function in a high-fat diet-fed ovariectomy (HFD-fed OVX) mouse model and elucidate the underlying mechanism of this effect. Methods: The experimental animals were divided into five groups: sham group, HFD-fed OVX group, and BZBS (0.7, 1.4, 2.8 g/kg) intervention groups. Senescence ß-galactosidase staining and echocardiography were used to evaluate cardiac function. SwissTargetPrediction, KEGG and GO enrichment analyses were used to screen the underlying mechanism of BZBS. The morphological and functional changes in cardiac mitochondria and the underlying molecular mechanism were assessed by transmission electron microscopy, western blotting and biochemical assays. STRING database was used to analysis protein-protein interaction (PPI) network. Molecular docking studies were employed to predict the interactions of specific BZBS compounds with their protein targets. Results: BZBS treatment ameliorated cardiac senescence and cardiac systole injury in HFD-fed OVX mice. GO and KEGG analyses revealed that the 530 targets of the 14 main components of BZBS were enriched mainly in the oxidative stress-associated pathway, which was confirmed by the finding that BZBS treatment prevented abnormal morphological changes and oxidative stress damage to cardiac mitochondria in HFD-fed OVX mice. Furthermore, the STRING database showed that the targets of BZBS were broadly related to the Sirtuins family. And BZBS upregulated the SIRT3 and elevated the activity of SOD2 in the hearts of HFD-fed OVX mice, which was also verified in vitro. Additionally, we revealed that imperatorin and osthole from the BZBS upregulated the expression of SIRT3 by directly docking with the transcription factors HDAC1, HDAC2, and BRD4, which regulate the expression of SIRT3. Conclusion: This research shows that the antioxidative effect and cardioprotective role of BZBS on HFD-fed OVX mice involves an increase in the activity of the SIRT3/SOD2 pathway, and the imperatorin and osthole of BZBS may play central roles in this process.

12.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891545

RESUMO

Efficient adsorbents for excess bilirubin removal are extremely important for the treatment of hyperbilirubinemia. However, traditional adsorbents, such as activated carbons and ion-exchange resins, still suffer from dissatisfactory adsorption performance and poor blood compatibility. Herein, we adopted a rational design strategy guided by density functional theory (DFT) calculations to prepare blood-compatible quaternary ammonium group grafted electrospun polyacrylonitrile nanofiber adsorbents. The calculation analysis and adsorption experiments were used to investigate the structure-function relationship between group types and bilirubin adsorption, both indicating that quaternary ammonium groups with suitable configurations played a crucial role in bilirubin binding. The obtained nanofiber adsorbents showed the bilirubin removal efficiency above 90% even at a coexisting BSA concentration of 50 g L-1. The maximum adsorption capacities were 818.9 mg g-1 in free bilirubin solution and 163.7 mg g-1 in albumin bound bilirubin solution. The nanofiber adsorbents also showed considerable bilirubin removal in dynamic adsorption to reduce the bilirubin concentration to a normal level, which was better than commercial activated carbons. Our study demonstrates the high feasibility of a theory-driven design method for the development of grafted electrospun nanofibers, which have good potential as bilirubin adsorbents in hemoperfusion applications.

13.
Sci Data ; 11(1): 667, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909038

RESUMO

Cnidium monnieri, a medicinal herb of the Cnidium genus and the Apiaceae family, is among the most important traditional Chinese medicines and is widely distributed in China. However, to date, no C. monnieri-related genomic information has been described. In this study, we assembled the C. monnieri genome of approximately 1210.23 Mb with a contig N50 of 83.14 Mb. Using PacBio HiFi and Hi-C sequencing data, we successfully anchored 93.86% of the assembled sequences to 10 pseudochromosomes (2n = 20). We predicted a total of 37,460 protein-coding genes, with 97.02% of them being functionally annotated in Non-Redundant, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and other databases. In addition, we identified 2,778 tRNAs, 4,180 rRNAs, 258 miRNAs, and 1,700 snRNAs in the genome. This is the first reported C. monnieri genome. Hopefully, the availability of this chromosome-level reference genome provides a significant basis for upcoming natural product-related biosynthetic pathway assessment in C. monnieri.


Assuntos
Cnidium , Genoma de Planta , Cromossomos de Plantas , Cnidium/genética , Medicina Tradicional Chinesa , Plantas Medicinais/genética
14.
Soft Matter ; 20(26): 5212-5220, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904173

RESUMO

Understanding how particles pack in space and the mechanisms underlying symmetry selection across soft matter is challenging. The Frank-Kasper (F-K) phase of complex spherical packing is amongst the most fascinating phases; however, it has not been observed in discotic liquid crystals until now. Herein, we report the first observation of F-K phases of charge transfer complexes (CTCs) obtained from triphenylene derivatives as donors and 2,4,7-trinitro-9-fluorenone as the acceptor. The CTCs were characterized using experimental and theoretical calculations, indicating that the F-K A15 cubic lattice possesses a unit cell containing 8 sphere-like supramolecules, each of which was self-assembled from 3 CTC complexes. The lattice constant was only 3.2 nm, which is by far the smallest for the A15 phase. Interestingly, the supramolecular assembly can be regarded as the molecular column splitting into isolated spherical fragments, impeding charge transfer and turning it into one insulator. This provides a simple and effective method for preparing asymmetric complex compounds for the design of unconventional self-assembled nanostructures.

15.
Int J Biol Macromol ; 270(Pt 2): 132491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763240

RESUMO

Capacitive deionization (CDI) technology holds great potential for rapid and efficient uranyl ion removal from wastewater. However, the related electrode materials still have much room for research. Herein, chitosan/phytic acid complexes were anchored on polypyrrole nanotubes (CS/PA-PPy) to fabricate the electrode for the electrosorption of uranyl ions (UO22+). In this system, polypyrrole nanotubes provided specific channels for ion and electron diffusion, and chitosan/phytic acid complexes offered selective sites for UO22+ binding. The results demonstrated that CS/PA-PPy via electrosorption showed faster kinetics and higher uranium uptake than those via physicochemical adsorption. The maximum adsorption capacity toward UO22+ via electrosorption (1.2 V) could reach 799.3 mg g-1, which was higher than most of the reported CDI electrodes. Electrochemical measurements and experimental characterizations showed that the electrosorption of UO22+ by CS/PA-PPy was a synergistic effect of capacitive process and physicochemical adsorption, in which the capacitive mechanism involved the formation of an electric double layer from hollow polypyrrole nanotubes, whereas the coordination of phosphate, amino and hydroxyl groups with UO22+ was attributed to physicochemical adsorption. With the rational design of material, along with its excellent uranium removal performance, this work exhibited a novel and potential composite electrode for uranium capture via CDI from wastewater.


Assuntos
Quitosana , Eletrodos , Nanotubos , Polímeros , Pirróis , Urânio , Águas Residuárias , Urânio/química , Urânio/isolamento & purificação , Polímeros/química , Águas Residuárias/química , Pirróis/química , Nanotubos/química , Adsorção , Quitosana/química , Purificação da Água/métodos , Cinética
16.
Water Res ; 256: 121577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593605

RESUMO

Nanoplastics (NPs) in wastewaters may present a potential threat to biological nitrogen removal in constructed wetlands (CWs). Iron ions are pivotal in microbially mediated nitrogen metabolism, however, explicit evidence demonstrating the impact of NPs on nitrogen removal regulated by iron utilization and metabolism remains unclear. Here, we investigated how NPs disturb intracellular iron homeostasis, consequently interfering with the coupling mechanism between iron utilization and nitrogen metabolism in CWs. Results indicated that microorganisms affected by NPs developed a siderophore-mediated iron acquisition mechanism to compensate for iron loss. This deficiency resulted from NPs internalization limited the activity of the electron transport system and key enzymes involved in nitrogen metabolism. Microbial network analysis further suggested that NPs exposure could potentially trigger destabilization in microbial networks and impair effective microbial communication, and ultimately inhibit nitrogen metabolism. These adverse effects, accompanied by the dominance of Fe3+ over certain electron acceptors engaged in nitrogen metabolism under NPs exposure, were potentially responsible for the observed significant deterioration in nitrogen removal (decreased by 30 %). This study sheds light on the potential impact of NPs on intracellular iron utilization and offers a substantial understanding of the iron-nitrogen coupling mechanisms in CWs.


Assuntos
Ferro , Nitrogênio , Áreas Alagadas , Ferro/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
17.
J Med Chem ; 67(7): 5458-5472, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556750

RESUMO

The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.


Assuntos
Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Arsênio/farmacologia , Tirosina Quinase da Agamaglobulinemia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Zhongguo Zhong Yao Za Zhi ; 49(3): 770-778, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621881

RESUMO

This paper aims to study the therapeutic effect of Massa Medicata Fermentata on hyperlipidemia model rats and investigate its mechanism of hypolipidemic effect with the help of non-targeted metabolomics. The mixed hyperlipidemia model rats were constructed by giving high-fat chow. After successful modeling, the rats were divided into the model group, pravastatin sodium group(4.4 mg·kg~(-1)), lipotropic group(0.1 g·kg~(-1)), high-dose group(2.4 g·kg~(-1)), medium-dose group(1.2 g·kg~(-1)), and low-dose group(0.6 g·kg~(-1)) of Massa Medicata Fermentata, and they were administered for four weeks once daily. An equal volume of ultrapure water was given to the blank group and model group. Serum lipid level and liver hematoxylin-eosin(HE) staining were used as indicators to estimate the intervention effect of Massa Medicata Fermentata on mixed hyperlipidemia, and the changes in metabolites in plasma of mixed hyperlipidemia model rats were analyzed by non-targeted metabolomics. The mechanism of the hypolipidemic effect of Massa Medicata Fermentata was analyzed through metabolite pathway enrichment. The results showed that compared with the model group, the Massa Medicata Fermentata administration group, especially the high-dose group, could significantly reduce the content of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.05 or P<0.01), and liver HE staining revealed that the number of adipocytes in the high-dose group was reduced to some extent. The potential biomarkers obtained by non-targeted metabolomics screening included glycerol 3-phosphate, sphingomyelin, sphingosine 1-phosphate, and deoxyuridine, which were mainly involved in the sphingolipid metabolism process, glycerophospholipid metabolism process, glycerol ester metabolism pathway, and pyrimidine metabolism pathway, totaling four possible metabolic pathways related to lipid metabolism. This study provides a reference for an in-depth investigation of the hypolipidemic mechanism of Massa Medicata Fermentata, which is of great significance for further promoting the clinical application of Massa Medicata Fermentata and increasing the indications.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fígado , Hiperlipidemias/tratamento farmacológico , Metabolômica , Colesterol , Dieta Hiperlipídica/efeitos adversos
19.
J Colloid Interface Sci ; 668: 343-351, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678889

RESUMO

Developing effective adsorbents for uranium extraction from natural seawater is strategically significant for the sustainable fuel supply of nuclear energy. Herein, stable and low-cost supramolecular complexes (PA-bPEI complexes) were facilely constructed through the assembly of phytic acid and hyperbranched polyethyleneimine based on the multiple modes of electrostatic interaction and hydrogen bonding. The PA-bPEI complexes exhibited not only high uptake (841.7 mg g-1) and selectivity (uranium/vanadium selectivity = 84.1) toward uranium but also good antibacterial ability against biofouling. Mechanism analysis revealed that phosphate chelating groups and amine assistant groups coordinated the uranyl ions together with a high affinity. To be more suitable for practical applications, powdery PA-bPEI complexes were compounded with sodium alginate to fabricate various macroscopic adsorbents with engineered forms, which achieved an extraction capacity of 9.0 mg g-1 in natural seawater after 50 days of testing. Impressively, the estimated economic cost of the macroscopic adsorbent for uranium extraction from seawater ($96.5 âˆ¼ 138.1 kg-1 uranium) was lower than that of all currently available uranium adsorbents. Due to their good uranium extraction performance and low economic cost, supramolecular complex-based adsorbents show great potential for industrial uranium extraction from seawater.

20.
Mol Cancer Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647531

RESUMO

The aberrant activation of fibroblast growth factor receptor (FGFR) acts as a potent driver of multiple types of human cancers. Despite the development of several conventional small-molecular FGFR inhibitors, their clinical efficacy is largely compromised due to low selectivity and side effects. Here, we report the selective FGFR1/2-targeting proteolysis targeting chimeric (PROTAC), BR-cpd7 that displays significant isoform specificity to FGFR1/2 with DC50 values around 10 nM, while sparing FGFR3. The following mechanistic investigation reveals the reduced FGFR signaling, through which BR-cpd7 induces cell cycle arrest and consequently blocks the proliferation of multiple FGFR1/2-dependent tumor cells. Importantly, BR-cpd7 has almost no anti-proliferative activity against cancer cells without FGFR aberrations, furtherly supporting its selectivity. In vivo, BR-cpd7 exhibits robust antitumor effects in FGFR1-dependent lung cancer at well-tolerated dose schedules, accompanied by complete FGFR1 depletion. Overall, we identify BR-cpd7 as a promising candidate for developing a selective FGFR1/2-targeted agent, thereby offering a new therapeutic strategy for human cancers in which FGFR1/2 plays a critical role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...