Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15215, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956409

RESUMO

Increasing evidence has shown that many environmental and toxic factors can cause testicular damage, leading to testicular ferroptosis and subsequent male reproductive disorders. Melatonin is a major hormone and plays an vital role in regulating male reproduction. However, there is a lack of research on whether Mel can alleviate testicular cell ferroptosis and its specific mechanism. In this study, the results indicated that Mel could enhance the viability of swine testis cells undergoing ferroptosis, reduce LDH enzyme release, increase mitochondrial membrane potential, and affect the expression of ferroptosis biomarkers. Furthermore, we found that melatonin depended on melatonin receptor 1B to exert these functions. Detection of MMP and ferroptosis biomarker protein expression confirmed that MT2 acted through the downstream Akt signaling pathway. Moreover, inhibition of the Akt signaling pathway can eliminate the protective effect of melatonin on ferroptosis, inhibit AMPK phosphorylation, reduce the expression of mitochondrial gated channel (VDAC2/3), and affect mitochondrial DNA transcription and ATP content. These results suggest that melatonin exerts a beneficial effect on mitochondrial function to mitigate ferroptosis through the MT2/Akt signaling pathway in ST cells.


Assuntos
Ferroptose , Melatonina , Mitocôndrias , Proteínas Proto-Oncogênicas c-akt , Receptor MT2 de Melatonina , Transdução de Sinais , Testículo , Animais , Melatonina/farmacologia , Masculino , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Suínos , Testículo/metabolismo , Testículo/efeitos dos fármacos , Receptor MT2 de Melatonina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
PLoS One ; 18(11): e0293073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033048

RESUMO

Droughts and prevailing arid conditions have a significant impacts on the natural environment, agriculture, and human life. To analyze the regional characteristics of drought in Baluchistan province, the aridity index (AI) and standardized potential evapotranspiration index (SPEI) were used in. The study analyzed the rainfall, temperature, and potential evapotranspiration (PET) data and the same were used for the calculation of AI as well as SPEI to find out the drought spells during the study period. The linear regression and Mann-Kendall test were applied to calculate the trend in AI as well as in SPEI results. The AI results revealed that most of the meteorological stations are arid and semi-arid, where the highest increasing aridity is noted at Kalat (0.0065/year). The results of the SPEI at 1 and 6-months identified the extreme to severe drought spell during 1998-2002 in all meteorological stations of Baluchistan province. The distinct drought spells identified from the SPEI results were in the years 1998-2003, 2006-2010, 2015-2016 and 2019. The drought frequency results showed highest frequency percentage at Lasbella (46%) of extreme to severe drought. The Mann-Kendall trend results showed negative trend in monthly AI and 1-month SPEI results and most significant trend was observed in April and October months, this shows that aridity and drought in the region are decreasing to some extent except Dalbandin and Lasbella observed increasing trend in winter season (November to January months) and Kalat met-station observed increasing trend in June. Prior investigation and planning of drought situations can help in controlling the far-reaching consequences on environment and human society.


Assuntos
Secas , Meteorologia , Humanos , Paquistão , Estações do Ano , Temperatura
3.
Dev Comp Immunol ; 147: 104895, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473827

RESUMO

BACKGROUND: Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) was the first nucleotide-binding region receptor (NLR) proposed to be expressed and function only in the reproductive system. Recent evidence suggests that NLRP9 is also capable of playing a role in infectious and inflammatory diseases. RESULTS AND CONCLUSIONS: In this study, we examined the expression of NLRP9 in various tissues of piglets and IPEC-J2 cells. The results showed that high expression of NLRP9 mRNA and protein were detected in both intestine of piglets and IPEC-J2 cells. Both LPS and poly I:C significantly up-regulated NLRP9 protein levels in the IPEC-J2 cells. Besides, poly I:C upregulated the level of transcriptional elements NF-κB, IRF3, IRF7, ISG15, ISG56, OAS1, and IFNB1. Furthermore, interference with the NLRP9 gene in the presence of poly I:C strongly downregulated the expression of all the above genes. Moreover, we demonstrated for the first time that NLRP9 acts in combination with VIM (Vimentin). These results suggested that NLRP9 may participate in the antiviral innate immune by binding to VIM in the porcine intestine. The findings provide preliminary insights into the molecular mechanisms involved in the regulation of mucosal immunity in the porcine intestine by NLRP9.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Vimentina , Animais , Linhagem Celular , Células Epiteliais , Nucleotídeos , Poli I , Suínos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
PeerJ ; 11: e15459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304876

RESUMO

The intestinal epithelium barrier serves as a highly dynamic immunologic frontier in the defense against invading pathogenic bacteria and viruses. Hence, understanding of the complicated underlying relationship between enteric pathogens and the intestinal epithelium barrier is vital for developing strategies to improve the intestinal health of farm animals. To this end, Caco-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) for 24 h and 5 µg/ml polyinosinic-polycytidylic acid (ploy(I:C)) for 4 h to imitate bacterial and viral infection processes, respectively. The specific alterations in gene expression of Caco-2 cells after stimulation were characterized by transcriptome sequencing. Seventy differentially expressed genes (DEGs) were identified under LPS exposure, and 17 DEGs were observed under ploy(I:C) exposure. We found that most DEGs were specific, and only one common DEG SPAG7 was observed. Gene Ontology (GO) annotation analysis indicated that all DEGs identified in the different treatments were mainly derived from GO terms related to the maintenance of cellular homeostasis. Moreover, specific DEGs such as SLC39A10, MT2A, and MT1E regulated by LPS treatment, while IFIT2 and RUNX2 mediated by ploy(I:C) treatment, which are derived from immune function modulation related GO terms, were confirmed by both transcriptome sequencing and qRT-PCR. In addition, both transcriptome sequencing and qRT-PCR results verified that LPS specifically down-regulated the DEGs INHBE and ARF6, which are involved in inflammation responses related to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway including the TGF-beta signaling pathways and the Ras signaling pathway. Ploy(I:C) uniquely suppressed the DEGs GABARAP and LAMTOR3, which participated in viral replication-associated pathways including autophagy and mTOR signaling pathway.


Assuntos
Animais Domésticos , Lipopolissacarídeos , Animais , Humanos , Células CACO-2 , Lipopolissacarídeos/farmacologia , Autofagia , Expressão Gênica , Antígenos de Superfície
5.
Environ Sci Pollut Res Int ; 29(41): 62698-62709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35411520

RESUMO

The combustion-supporting effect of steam to coke breeze in sintering has the potential to improve sinter quality and reduce pollutants emissions. The results show that increasing the by-product steam injection concentration (0.32-0.47vol%) and prolonging the injection time (5 min) within a proper range (10-15 min) can improve sinter quality. 2.13kgce/t-sinter of the fuel consumption was decreased by reducing coke breeze usage from 5.60 to 5.45% under the recommended parameters, with 15.16% decrease of CO in sintering waste gas. By comparing experimental data with thermodynamic calculations, although the reaction between CO and steam can reduce CO emission and generate H2, steam tends to react with coke breeze to generate H2 and CO (react at 674℃), and OH radical produced by H2 which can reduce the activation energy of CO oxidation reaction is the key to reducing pollutant emissions. The potential economic benefit of steam injection technology was calculated based on a 360m2 sintering machine (the annual sinter output is 3.2million tons), excluding the equipment modification and steam injection cost of $300,000; a profit of $737491.2 per year or 0.23 dollars per ton sinter can be achieved. Therefore, low-carbon and cleaner iron ore sintering production can be realized through applying by-product steam.


Assuntos
Coque , Ferro , Vapor
6.
J Cancer ; 12(16): 4945-4957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234864

RESUMO

Lung cancer is the second most common cancer in both men and women. The deubiquitinase PSMD7, as a core component of the 26S proteasome, is critical for the degradation of ubiquitinated proteins in the proteasome. Currently, PSMD7 expression and its roles in the progression of lung cancer remain largely unknown. In this study, we assessed PSMD7 expression and investigated the underlying molecular events by which PSMD7 regulates tumor progression in non-small cell lung cancer (NSCLC). The results showed that PSMD7 is more highly expressed in NSCLC tissues than in adjacent noncancerous tissues. PSMD7 expression was also closely associated with lymph node invasion and the laterality of the tumor in lung adenocarcinoma (LUAD). A high PSMD7 level predicted poor overall survival (OS) and disease-free survival (DFS) in LUAD patients, and PSMD7 knockdown significantly reduced cell proliferation and induced G0/G1-phase cell cycle arrest, cell senescence and apoptosis. PSMD7 knockdown inhibited expression of a set of proteins regulating cell cycle progression. Depletion of PSMD7 increased p53 levels and induced p21 and puma expression in a p53-dependent manner. Importantly, knockdown of PSMD7 markedly inhibited LUAD tumor growth in a xenograft mouse model. Taken together, these findings indicate that PSMD7 may serve as a valuable prognostic indicator and potential therapeutic target in LUAD.

7.
Neoplasia ; 23(6): 607-623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102455

RESUMO

Tumor metastasis is a leading cause of death in lung adenocarcinoma (LUAD) patients, but the molecular events that regulate metastasis have not been completely elucidated. STAMBP is a deubiquitinating enzyme of the Jab1/MPN metalloenzyme family that regulates the stability of substrates in cells by specifically removing ubiquitin molecules. We found that STAMBP expression was increased in the cytoplasm of tumor cells from LUAD patients. The STAMBP level was closely associated with tumor size, lymph node invasion and neoplasm disease stage. A high STAMBP level predicted poor overall survival and disease-free survival in LUAD patients. STAMBP overexpression promoted cell migration and invasion, whereas STAMBP knockdown attenuated these processes in LUAD cells after epidermal growth factor treatment. Mechanistically, increased STAMBP expression promoted the stabilization of Epidermal growth factor receptor (EGFR), whereas STAMBP knockdown induced the degradation of EGFR. STAMBP may deubiquitinate EGFR by localizing in early endosomes and increase EGFR membrane localization in LUAD cells. The overexpression of STAMBP triggered the activation of MAPK signaling after epidermal growth factor treatment. In contrast, this activation was attenuated in STAMBP knockdown cells. Small molecule inhibitors of EGFR and MAPK signaling pathway may block STAMBP-induced cell mobility and invasion as well as ERK activation in cells. Importantly, STAMBP knockdown suppressed LUAD tumor growth and metastasis by regulating the EGFR-mediated ERK activation in a xenograft mouse model. Our findings identified STAMBP as a novel potential target for LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Cancer ; 11(22): 6675-6685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33046988

RESUMO

Lung cancer is one of the most common malignant tumors in the world, with a high rate of malignancy and mortality. Seeking new biomarkers and potential drug targets is urgent for effective treatment of the disease. Deubiquitinase UCHL5/UCH37, as an important component of the 26S proteasome, plays critical roles in ubiquitinated substrate degradation. Although previous studies have shown that UCHL5 promotes tumorigenesis, its role in lung cancer remains largely unknown. In this study, we evaluated the expression and clinical significance of UCHL5 in non-small cell lung cancer (NSCLC). The results demonstrated that the UCHL5 expression level was significantly upregulated in NSCLC tissues compared with the adjacent noncancerous tissues. The level of UCHL5 was associated with tumor size, lymph node invasion, TNM stage and malignant tumor history in patients with lung adenocarcinoma (LUAD). Importantly, high UCHL5 expression predicted a poor overall survival (OS) and a poor disease-free survival (DFS) in patients with LUAD. Univariate regression analysis showed that tumor size, lymph node invasion, TNM stage and UCHL5 expression were associated with OS and DFS in patients with LUAD. The multivariate analysis indicated that the UCHL5 expression level was an independent prognostic factor for OS (HR=1.171, 95% CI=1.052-1.303) and DFS (HR=1.143, 95% CI=1.031-1.267) in these patients. UCHL5 knockdown in LUAD cells significantly inhibited cell proliferation and reduced the expression of key cell cycle proteins. These findings indicate that UCHL5 may serve as a potential prognostic marker and a new therapeutic target for patients with LUAD.

9.
Am J Transl Res ; 12(9): 5433-5448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042429

RESUMO

Breast cancer is the most common malignant tumor and the leading cause of cancer-related death in women. The ubiquitin-proteasome system regulates the stability of most proteins controlling various biological processes in human cells. PSMD7, as a core component of the 26S proteasome, is critical for the degradation of ubiquitinated proteins in the proteasome. Currently, PSMD7 expression and its roles in the progression of breast cancer remain largely unknown. In this study, we assessed the level of PSMD7 in breast cancer tissues and investigated the underlying molecular events by which PSMD7 could play a role in tumor progression. The results showed that the PSMD7 level was significantly upregulated in breast cancer tissues. PSMD7 expression was closely associated with tumor subtype, tumor size, lymph node invasion, and TNM stage. A high PSMD7 level predicted poor overall survival (OS) and disease-free survival (DFS) in breast cancer patients. Furthermore, univariate Cox regression analysis indicated that lymph node invasion, distant metastasis, and PSMD7 expression were associated with OS and DFS. Multivariate regression analysis indicated that PSMD7 was an independent predictor of OS (HR=1.310, 95% CI=1.038-1.652). Importantly, PSMD7 knockdown induced cell cycle arrest in the G0/G1 phase, leading to cell senescence and apoptosis. PSMD7 knockdown inhibited the expression of key cell cycle-related proteins and promoted the stability of p21 and p27 in breast cancer cells. PSMD7 may be a valuable prognostic indicator and potential therapeutic target for breast cancer.

10.
J Cancer ; 11(10): 2962-2971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226511

RESUMO

PSMD14 is a 19S-proteasome-associated deubiquitinating enzyme that facilitates protein degradation by the 20S proteasome core particle. Although accumulating evidence indicates that PSMD14 has emerged as a critical oncogenic factor by promoting tumor growth, the expression and function of PSMD14 in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we assessed PSMD14 expression and correlated it with clinical-pathological features and patient survival in NSCLC. We also determined the roles of PSMD14 in the regulation of lung adenocarcinoma (LUAD) cell growth. The results showed that PSMD14 expression was significantly upregulated in human NSCLC tissues compared with adjacent non-cancerous tissues. The PSMD14 level was associated with tumor size, lymph node invasion, and TNM stage in LUAD patients. Importantly, high PSMD14 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in LUAD patients. Further, knockdown of PSMD14 significantly inhibited cell growth and caused G1 arrest and cellular senescence by increasing p21 stability in LUAD cells. PSMD14 knockdown also promoted cell apoptosis by increasing cleaved caspase-3 levels in H1299 cells. PSMD14 may serve as a potential prognostic marker and therapeutic target for LUAD patients.

11.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788098

RESUMO

An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...