Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122663, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38878481

RESUMO

Ovarian cancer (OvCa) is a leading cause of mortality among gynecological malignancies and usually manifests as intraperitoneal spheroids that generate metastases, ascites, and an immunosuppressive tumor microenvironment. In this study, we explore the immunomodulatory properties of cowpea mosaic virus (CPMV) as an adjuvant immunotherapeutic agent using an in vitro model of OvCa peritoneal spheroids. Previous findings highlighted the potent efficacy of intratumoral CPMV against OvCa in mouse tumor models. Leveraging the precision control over material deposition and cell patterning afforded by digital-light-processing (DLP) based bioprinting, we constructed OvCa-macrophage spheroids to mimic peritoneal spheroids using gelatin methacrylate (GelMA), a collagen-derived photopolymerizable biomaterial to mimic the extracellular matrix. Following CPMV treatment, bioprinted spheroids exhibited inhibited OvCa progression mediated by macrophage activation. Our analysis indicates that CPMV regulates and activates macrophage to both induce OvCa cell killing and restore normal cell-cell junctions. This study deepened our understanding of the mechanism of CPMV intratumoral immunotherapy in the setting of OvCa. This study also highlights the potential of studying immunotherapies using high throughput tissue models via DLP bioprinting.

2.
Biochemistry ; 63(12): 1543-1552, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38787909

RESUMO

Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.


Assuntos
Capsídeo , Guanidina , Vírus da Hepatite B , Guanidina/química , Guanidina/farmacologia , Vírus da Hepatite B/química , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/efeitos dos fármacos , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Espalhamento a Baixo Ângulo , Multimerização Proteica , Modelos Moleculares , Montagem de Vírus/efeitos dos fármacos , Difração de Raios X
3.
Adv Sci (Weinh) ; 11(18): e2308237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430536

RESUMO

The key challenge in cancer treatment is prevention of metastatic disease which is therapeutically resistant and carries poor prognoses necessitating efficacious prophylactic approaches that prevent metastasis and recurrence. It is previously demonstrated that cowpea mosaic virus (CPMV) induces durable antitumor responses when used in situ, i.e., intratumoral injection. As a new direction, it is showed that CPMV demonstrates widespread effectiveness as an immunoprophylactic agent - potent efficacy is demonstrated in four metastatic models of colon, ovarian, melanoma, and breast cancer. Systemic administration of CPMV stimulates the innate immune system, enabling attack of cancer cells; processing of the cancer cells and associated antigens leads to systemic, durable, and adaptive antitumor immunity. Overall, CPMV demonstrated broad efficacy as an immunoprophylactic agent in the rejection of metastatic cancer.


Assuntos
Comovirus , Animais , Camundongos , Feminino , Metástase Neoplásica/prevenção & controle , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças
4.
Adv Mater ; 36(19): e2307679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372431

RESUMO

Triggering lysosome-regulated immunogenic cell death (ICD, e.g., pyroptosis and necroptosis) with nanomedicines is an emerging approach for turning an "immune-cold" tumor "hot"-a key challenge faced by cancer immunotherapies. Proton sponge such as high-molecular-weight branched polyethylenimine (PEI) is excellent at rupturing lysosomes, but its therapeutic application is hindered by uncontrollable toxicity due to fixed charge density and poor understanding of resulted cell death mechanism. Here, a series of proton sponge nano-assemblies (PSNAs) with self-assembly controllable surface charge density and cell cytotoxicity are created. Such PSNAs are constructed via low-molecular-weight branched PEI covalently bound to self-assembling peptides carrying tetraphenylethene pyridinium (PyTPE, an aggregation-induced emission-based luminogen). Assembly of PEI assisted by the self-assembling peptide-PyTPE leads to enhanced surface positive charges and cell cytotoxicity of PSNA. The self-assembly tendency of PSNAs is further optimized by tuning hydrophilic and hydrophobic components within the peptide, thus resulting in the PSNA with the highest fluorescence, positive surface charge density, cell uptake, and cancer cell cytotoxicity. Systematic cell death mechanistic studies reveal that the lysosome rupturing-regulated pyroptosis and necroptosis are at least two causes of cell death. Tumor cells undergoing PSNA-triggered ICD activate immune cells, suggesting the great potential of PSNAs to trigger anticancer immunity.


Assuntos
Morte Celular Imunogênica , Lisossomos , Peptídeos , Polietilenoimina , Prótons , Lisossomos/metabolismo , Humanos , Peptídeos/química , Morte Celular Imunogênica/efeitos dos fármacos , Polietilenoimina/química , Linhagem Celular Tumoral , Neoplasias/patologia , Nanopartículas/química , Nanoestruturas/química , Sobrevivência Celular/efeitos dos fármacos
5.
Mater Adv ; 5(4): 1473-1479, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38380336

RESUMO

We have developed nanoparticle formulations targeting M2 macrophages for cancer immunotherapy by conjugating high-affinity binding peptides to cowpea mosaic virus as an immunostimulatory adjuvant. We confirmed the targeting of and uptake by M2 macrophages in vitro and the therapeutic efficacy of the nanoparticles against murine melanoma in vivo.

6.
Mater Adv ; 5(4): 1480-1486, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38380337

RESUMO

Implantable polymeric hydrogels loaded with immunostimulatory cowpea mosaic virus (CPMV) were fabricated using digital light processing (DLP) printing technology. The CPMV-laden hydrogels were surgically implanted into the peritoneal cavity to serve as depots for cancer slow-release immunotherapy. Sustained release of CPMV within the intraperitoneal space alleviates the need for repeated dosing and we demonstrated efficacy against ovarian cancer in a metastatic mouse model.

7.
Proc Natl Acad Sci U S A ; 120(43): e2221859120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844250

RESUMO

Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorß). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.


Assuntos
Neoplasias Pulmonares , Vacinas Virais , Humanos , Camundongos , Animais , Calgranulina B/metabolismo , Neoplasias Pulmonares/prevenção & controle , Calgranulina A/metabolismo , Pulmão/patologia , Citocinas/metabolismo
8.
Bioconjug Chem ; 34(9): 1585-1595, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37615599

RESUMO

An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids. Cargo-loading to the internal cavity is achieved with thiol-reactive small molecules. However, the internal loading capacity of these nanoparticles is limited by the presence of a single reactive cysteine (C75) per coat protein with low inherent reactivity. Here, we use structure-based design to engineer cysteine-added mutants of PhMV VLPs that display increased reactivity toward thiol-reactive small molecules. Specifically, the A31C and S137C mutants show a greater than 10-fold increased rate of reactivity towards thiol-reactive small molecules, and PhMV Cys1 (A31C), PhMV Cys2 (S137C), and PhMV Cys1+2 (double mutant) VLPs display up to three-fold increased internal loading of the small molecule chemotherapeutics aldoxorubicin and vcMMAE and up to four-fold increased internal loading of the MRI imaging reagent DOTA(Gd). These results further improve upon a promising plant virus-based nanocarrier system for use in targeted delivery of small-molecule drugs and imaging reagents in vivo.


Assuntos
Cisteína , Nanopartículas , Aminoácidos , Engenharia
9.
Front Microbiol ; 14: 1117494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152732

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 sparked intensive research into the development of effective vaccines, 50 of which have been approved thus far, including the novel mRNA-based vaccines developed by Pfizer and Moderna. Although limiting the severity of the disease, the mRNA-based vaccines presented drawbacks, such as the cold chain requirement. Moreover, antibody levels generated by these vaccines decline significantly after 6 months. These vaccines deliver mRNA encoding the full-length spike (S) glycoprotein of SARS-CoV-2, but must be updated as new strains and variants of concern emerge, creating a demand for adjusted formulations and booster campaigns. To overcome these challenges, we have developed COVID-19 vaccine candidates based on the highly conserved SARS CoV-2, 809-826 B-cell peptide epitope (denoted 826) conjugated to cowpea mosaic virus (CPMV) nanoparticles and bacteriophage Qß virus-like particles, both platforms have exceptional thermal stability and facilitate epitope delivery with inbuilt adjuvant activity. We evaluated two administration methods: subcutaneous injection and an implantable polymeric scaffold. Mice received a prime-boost regimen of 100 µg per dose (2 weeks apart) or a single dose of 200 µg administered as a liquid formulation, or a polymer implant. Antibody titers were evaluated longitudinally over 50 weeks. The vaccine candidates generally elicited an early Th2-biased immune response, which stimulates the production of SARS-CoV-2 neutralizing antibodies, followed by a switch to a Th1-biased response for most formulations. Exceptionally, vaccine candidate 826-CPMV (administered as prime-boost, soluble injection) elicited a balanced Th1/Th2 immune response, which is necessary to prevent pulmonary immunopathology associated with Th2 bias extremes. While the Qß-based vaccine elicited overall higher antibody titers, the CPMV-induced antibodies had higher avidity. Regardless of the administration route and formulation, our vaccine candidates maintained high antibody titers for more than 50 weeks, confirming a potent and durable immune response against SARS-CoV-2 even after a single dose.

10.
J Mater Chem B ; 11(24): 5429-5441, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36861401

RESUMO

Ovarian cancer ranks fifth in cancer deaths amongst women, and most patients are diagnosed with late-stage and disseminated diseases. Surgical debulking and chemotherapy remove most of the tumor burden and provide a short period of remission; however, most patients experience cancer relapse and eventually succumb to the disease. Therefore, there is an urgent need for the development of vaccines to prime anti-tumor immunity and prevent its recurrence. Here we developed vaccine formulations composed of a mixture of irradiated cancer cells (ICCs, providing the antigen) and cowpea mosaic virus (CPMV) adjuvants. More specifically we compared the efficacy of co-formulated vs. mixtures of ICCs and CPMV. Specifically, we compared co-formulations where the ICCs and CPMV are bonded through natural CPMV-cell interactions or chemical coupling vs. mixtures of PEGylated CPMV and ICCs, where PEGylation of CPMV prevents ICC interactions. Flow cytometry and confocal imaging provided insights into the composition of the vaccines and their efficacy was tested using a mouse model of disseminated ovarian cancer. 67% of the mice receiving the co-formulated CPMV-ICCs survived the initial tumor challenge, and 60% of the surviving mice rejected tumors in a re-challenge experiment. In stark contrast, simple mixtures of the ICCs and (PEGylated) CPMV adjuvants were ineffective. Overall, this study highlights the importance of the co-delivery of cancer antigens and adjuvants in ovarian cancer vaccine development.


Assuntos
Vacinas Anticâncer , Comovirus , Neoplasias Ovarianas , Humanos , Animais , Feminino , Comovirus/química , Modelos Animais de Doenças , Neoplasias Ovarianas/terapia , Polietilenoglicóis
11.
Small Sci ; 3(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38465197

RESUMO

Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.

12.
ACS Omega ; 7(42): 38053-38060, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312416

RESUMO

Antimicrobial resistance is a global health threat that is exacerbated by the overuse and misuse of antibiotics in medicine and agriculture. As an alternative to conventional antimicrobial drugs, phage therapy involves the treatment of infected patients with a bacteriophage that naturally destroys bacterial pathogens. With the re-emergence of phage therapy, novel tools are needed to study phages. In this work we set out to screen and isolate peptide candidates that bind to phages and act as affinity tags. Such peptides functionalized with an imaging agent could serves as versatile tools for tracking and imaging of phages. Specifically, we screened a phage display library for peptides that bind to the Good Vibes phage (GV), which lyses the bacterial pathogen Pseudomonas aeruginosa. Isolated monoclonal library phages featured a highly conserved consensus motif, LPPIXRX. The corresponding peptide WDLPPIGRLSGN was synthesized with a GGGSK linker and conjugated to cyanine 5 or biotin. The specific binding of the LPPIXRX motif to GV in vitro was confirmed using an enzyme-linked immunosorbent assay. We demonstrated imaging and tracking of GV in bacterial populations using the fluorescent targeting peptide and flow cytometry. In conclusion, we developed fluorescent labeled peptides that can bind to bacteriophage GV specifically, which may enable real-time analysis of phage in vivo and monitor the efficacy of phage therapy.

13.
Biomacromolecules ; 23(10): 4379-4387, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053908

RESUMO

Ovarian cancer is the foremost cause of gynecological cancer and a major cause of cancer death in women. Treatment for advanced stage is surgical debulking followed by chemotherapy; however, most patients relapse with more aggressive and therapy-resistant tumors. There is a need to develop drug delivery approaches to deliver platinum therapies to tumors to increase efficacy while maintaining safety. Toward this goal, we utilized the protein nanotubes from the plant virus, tobacco mosaic virus (TMV), as a drug carrier. Specifically, the nanochannel of TMV was loaded with the active dication form of cisplatin (cisPt2+), making use of the negatively charged Glu acid side chains that line the interior channel of TMV. We achieved a loading efficiency with ∼2700 cisPt2+ per TMV; formulation stability was established with drug complexes stably loaded into the carrier for 2 months under refrigerated storage. TMV-cisPt maintained its efficacy against ovarian tumor cells with an IC50 of ∼40 µM. TMV-cisPt exhibited superior efficacy vs free cisPt in ovarian tumor mouse models using intraperitoneal ID8-Defb29/Vegf-a-Luc (mouse) tumors and subcutaneous A2780 (human) xenografts. TMV-cisPt treatment led to reduced tumor burden and increased survival. Using ID8-Defb29/Vegf-a-Luc-bearing C57BL/6 mice, we also noted reduced tumor growth when animals were treated with TMV alone, which may indicate antitumor immunity induced by the immunomodulatory nature of the plant virus nanoparticle. Biodistribution studies supported the efficacy data, showing increased cisPt accumulation within tumors when delivered via the TMV carrier vs free cisPt administration. Finally, good safety profiles were noted. The study highlights the potential of TMV as a drug carrier against cancer and points to the opportunity to explore plant viruses as chemo-immuno combination cancer therapeutics.


Assuntos
Neoplasias Ovarianas , Vírus do Mosaico do Tabaco , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Portadores de Fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/tratamento farmacológico , Platina , Distribuição Tecidual , Nicotiana , Vírus do Mosaico do Tabaco/química , Fator A de Crescimento do Endotélio Vascular
14.
Adv Healthc Mater ; 11(12): e2200163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184421

RESUMO

Nanoparticle (NP)-based drug delivery systems are promising in anticancer therapy, capable of delivering cargo with superior selectivity and achieving enhanced tumor accumulation compared to small-molecule therapeutics. As more efforts are being devoted to NP development, molecular polymer bottlebrushes (MPBs) have gained attention as a potential drug delivery vehicle. To date, the influence of various MPB parameters such as size, shape, and surface charge in determining tumor penetrability have been systematically probed. However, the role of amphiphilicity, specifically the hydrophilic-hydrophobic balance, remains unexplored. In this study, a series of MPBs are employed with varied hydrophobicity levels to reveal a dependence between MPB composition, cell association, and tumor homing. The data indicates that increasing levels of hydrophobicity in MPBs (to a certain level) demonstrate only marginal effects in vitro but reveals enhanced tumor homing in a mouse model of ovarian cancer in vivo, where more hydrophilic MPBs exhibit low tissue deposition and low tumor homing. In contrast, more hydrophobic MPBs show significant tumor accumulation and homing due to their engineered hydrophobicity.


Assuntos
Nanopartículas , Neoplasias , Animais , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química
15.
Nat Commun ; 12(1): 589, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500404

RESUMO

Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/ultraestrutura , Vírus da Hepatite B/fisiologia , Modelos Moleculares , Montagem de Vírus , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus da Hepatite B/ultraestrutura , Multimerização Proteica/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
16.
Biomater Sci ; 8(19): 5489-5503, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32914796

RESUMO

The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qß VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.


Assuntos
Vacinas Anticâncer , Comovirus , Nanopartículas , Neoplasias , Vírus , Animais , Cães , Humanos , Imunoterapia , Camundongos
17.
ACS Chem Biol ; 15(8): 2273-2280, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32662972

RESUMO

While there is an effective vaccine for Human Hepatitis B Virus (HBV), 257 million people have chronic infections for which there is no cure. The assembly process for the viral capsid is a potential therapeutic target. In order to understand the capsid assembly process, we investigated the dimeric building blocks of the capsid. To understand what blocks assembly, we took advantage of an assembly incompetent mutant dimer, Cp149-Y132A, located in the interdimer interface. This mutation leads to changes in protein dynamics throughout the structure of the dimer as measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS). To further understand how the HBV capsid assembles, the homologue woodchuck HBV (WHV) capsid protein dimer (Cp) was used. WHV is more stable than HBV in HDX-MS and native mass spectrometry experiments. Because the WHV Cp assembles more rapidly into viral capsids than HBV, it was suspected that an increase in stability of the intradimer interface and/or in the contact region leads to increased assembly rates. The differences in dynamics when comparing HBV and human Cp149-Y132A as well as the differences in dynamics when comparing the HBV and WHV Cps allowed us to map an allosteric network within the HBV dimer. Through a careful comparison of structure, stability, and dynamics using four different capsid protein dimers, we conclude that protein subunit dynamics regulate HBV capsid assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B/metabolismo , Montagem de Vírus , Regulação Alostérica , Dimerização , Fluorometria/métodos , Vírus da Hepatite B/fisiologia , Espectrometria de Massas/métodos
18.
ACS Chem Biol ; 15(12): 3124-3132, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459465

RESUMO

During the hepatitis B virus lifecycle, 120 copies of homodimeric capsid protein assemble around a copy of reverse transcriptase and viral RNA and go on to produce an infectious virion. Assembly needs to be tightly regulated by protein conformational change to ensure symmetry, fidelity, and reproducibility. Here, we show that structures at the intradimer interface regulate conformational changes at the distal interdimer interface and so regulate assembly. A pair of interacting charged residues, D78 from each monomer, conspicuously located at the top of a four-helix bundle that forms the intradimer interface, were mutated to serine to disrupt communication between the two monomers. The mutation slowed assembly and destabilized the dimer to thermal and chemical denaturation. Mutant dimers showed evidence of transient partial unfolding based on the appearance of new proteolytically sensitive sites. Though the mutant dimer was less stable, the resulting capsids were as stable as the wildtype, based on assembly and thermal denaturation studies. Cryo-EM image reconstructions of capsid indicated that the subunits adopted an "open" state more usually associated with a free dimer and that the spike tips were either disordered or highly flexible. Molecular dynamics simulations provide mechanistic explanations for these results, suggesting that D78 stabilizes helix 4a, which forms part of the intradimer interface, by capping its N-terminus and hydrogen-bonding to nearby residues, whereas the D78S mutation disrupts these interactions, leading to partial unwinding of helix 4a. This in turn weakens the connection from helix 4 and the intradimer interface to helix 5, which forms the interdimer interface.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Hepatite B/química , Dimerização , Vírus da Hepatite B/fisiologia , Simulação de Dinâmica Molecular , Conformação Proteica , Reprodutibilidade dos Testes
19.
J Am Chem Soc ; 142(17): 7868-7882, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32233479

RESUMO

There are ∼1030 possible intermediates on the assembly path from hepatitis B capsid protein dimers to the 120-dimer capsid. If every intermediate was tested, assembly would often get stuck in an entropic trap and essentially every capsid would follow a unique assembly path. Yet, capsids assemble rapidly with minimal trapped intermediates, a realization of the Levinthal paradox. To understand the fundamental mechanisms of capsid assembly, it is critical to resolve the early stages of the reaction. We have used time-resolved small angle X-ray scattering, which is sensitive to solute size and shape and has millisecond temporal resolution. Scattering curves were fit to a thermodynamically curated library of assembly intermediates, using the principle of maximum entropy. Maximum entropy also provides a physical rationale for the selection of species. We found that the capsid assembly pathway was exquisitely sensitive to initial assembly conditions. With the mildest conditions tested, the reaction appeared to be two-state from dimer to 120-dimer capsid with some dimers-of-dimers and trimers-of-dimers. In slightly more aggressive conditions, we observed transient accumulation of a decamer-of-dimers and the appearance of 90-dimer capsids. In conditions where there is measurable kinetic trapping, we found that highly diverse early intermediates accumulated within a fraction of a second and propagated into long-lived kinetically trapped states (≥90-mer). In all cases, intermediates between 35 and 90 subunits did not accumulate. These results are consistent with the presence of low barrier paths that connect early and late intermediates and direct the ultimate assembly path to late intermediates where assembly can be paused.


Assuntos
Proteínas do Capsídeo/química , Montagem de Vírus/genética , Humanos
20.
ACS Nano ; 13(7): 7610-7626, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31173689

RESUMO

For many viruses, capsids (biological nanoparticles) assemble to protect genetic material and dissociate to release their cargo. To understand these contradictory properties, we analyzed capsid assembly for hepatitis B virus; an endemic pathogen with an icosahedral, 120-homodimer capsid. We used solution X-ray scattering to examine trapped and equilibrated assembly reactions. To fit experimental results, we generated a library of distinct intermediates, selected by umbrella sampling of Monte Carlo simulations. The number of possible capsid intermediates is immense, ∼1030, yet assembly reactions are rapid and completed with high fidelity. If the huge number of possible intermediates were actually present, maximum entropy analysis shows that assembly reactions would be blocked by an entropic barrier, resulting in incomplete nanoparticles. When an energetic term was applied to select the stable species that dominated the reaction mixture, we found only a few hundred intermediates, mapping out a narrow path through the immense reaction landscape. This is a solution to a viral application of the Levinthal paradox. With the correct energetic term, the match between predicted intermediates and scattering data was striking. The grand canonical free energy landscape for assembly, calibrated by our experimental results, supports a detailed analysis of this complex reaction. There is a narrow range of energies that supports on-path assembly. If association energy is too weak or too strong, progressively more intermediates will be entropically blocked, spilling into paths leading to dissociation or trapped incomplete nanoparticles, respectively. These results are relevant to many viruses and provide a basis for simplifying assembly models and identifying new targets for antiviral intervention. They provide a basis for understanding and designing biological and abiological self-assembly reactions.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Hepatite B/química , Nanopartículas/química , Proteínas do Capsídeo/isolamento & purificação , Entropia , Simulação de Dinâmica Molecular , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...