Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0038824, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990027

RESUMO

Fecal microbiota transplantation (FMT) is an innovative and promising treatment for inflammatory bowel disease (IBD), which is related to the capability of FMT to supply functional microorganisms to improve recipient gut health. Numerous studies have highlighted considerable variability in the efficacy of FMT interventions for IBD. Several factors, including the composition of the donor microorganisms, significantly affect the efficacy of FMT in the treatment of IBD. Consequently, identifying the functional microorganisms in the donor is crucial for enhancing the efficacy of FMT. To explore potential common anti-inflammatory bacteria with therapeutic implications for IBD, germ-free (GF) BALB/c mice were pre-colonized with fecal microbiota obtained from diverse donors, including Macaca fascicularis (MCC_FMT), Bama miniature pigs (BP_FMT), beagle dogs (BD_FMT), and C57BL/6 J mice (Mice_FMT). Subsequently, mice were treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by MCC_FMT, BP_FMT, BD_FMT, and Mice_FMT, as demonstrated by the prevention of an elevated disease activity index in mice. Additionally, the utilization of distinct donors protected the intestinal barrier and contributed to the regulation of cytokine homeostasis. Metagenomic sequencing data showed that the microbial community structure and dominant species were significantly different among the four groups, which may be linked to variations in the anti-inflammatory efficacy observed in the respective groups. Notably, Lactobacillus reuteri and Flavonifractor plautii were consistently present in all four groups. L. reuteri exhibited a significant negative correlation with IL-1ß, and animal studies further confirmed its efficacy in alleviating IBD, suggesting the presence of common functional bacteria across different donors that exert anti-inflammatory effects. This study provides essential foundational data for the potential clinical applications of FMT.IMPORTANCEDespite variations in efficacy observed among donors, numerous studies have underscored the potential of fecal microbiota transplantation (FMT) for managing inflammatory bowel disease (IBD), indicating the presence of shared anti-IBD bacterial species. In the present study, the collective anti-inflammatory efficacy observed across all four donor groups prompted the identification of two common bacterial species using metagenomics. A significant negative correlation between Lactobacillus reuteri and IL-1ß was revealed. Furthermore, mice gavaged with L. reuteri successfully managed the colitis challenge induced by dextran sodium sulfate (DSS), suggesting that L. reuteri may act as an efficacious bacterium mediating shared anti-inflammatory effects among variable donors. This finding highlights the utilization of variable donors to screen FMT core bacteria, which may be a novel strategy for developing FMT applications.

2.
Front Cell Infect Microbiol ; 13: 1343752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38357210

RESUMO

Background: Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns. Results: FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice. Conclusions: FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Transplante de Microbiota Fecal/métodos , Disbiose/terapia , Disbiose/microbiologia , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...