Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 656: 124093, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38583822

RESUMO

A multifunctional nanoplatform was constructed in this work, with the goal of ameliorating the challenges faced with traditional cancer chemotherapy. Cisplatin (CP) was loaded into mesoporous polydopamine (mPDA) nanoparticles (NPs) with a drug loading of 15.8 ± 0.1 %, and MnO2 used as pore sealing agent. Finally, the NPs were wrapped with platelet membrane (PLTM). P-selectin on the PLTM can bind to CD44, which is highly expressed on the tumor cell membrane, so as to improve the targeting performance of the NPs. In addition, the CD47 on the PLTM can prevent the NPs from being phagocytosed by macrophages, which is conducive to immune escape. The final PLTM-CP@mPDA/MnO2 NPs were found to have a particle size of approximately 198 nm. MnO2 is degraded into Mn2+ in the tumor microenvironment, leading to CP release from the pores in the mPDA. CP both acts as a chemotherapy agent and can also increase the concentration of H2O2 in cells. Mn2+ can catalyze the conversion of H2O2 to OH, resulting in oxidative damage and chemodynamic therapy. In addition, Mn2+ can be used as a contrast agent in magnetic resonance imaging (MRI). In vitro and in vivo experiments were performed to explore the therapeutic effect of the NPs. When the concentration of CP is 30 µg/mL, the NPs cause approximately 50 % cell death. It was found that the PLTM-CP@mPDA/MnO2 NPs are targeted to cancerous cells, and in the tumor site cause extensive apoptosis. Tumor growth is thereby repressed. No negative off-target side effects were noted. MRI could be used to confirm the presence of the NPs in the tumor site. Overall, the nano-platform developed here provides cooperative chemotherapy and chemodynamic therapy, and can potentially be used for effective cancer treatment which could be monitored by MRI.


Assuntos
Antineoplásicos , Plaquetas , Cisplatino , Indóis , Compostos de Manganês , Nanopartículas , Óxidos , Polímeros , Compostos de Manganês/química , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Cisplatino/química , Polímeros/química , Indóis/química , Indóis/administração & dosagem , Animais , Óxidos/química , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Liberação Controlada de Fármacos , Porosidade , Camundongos Endogâmicos BALB C , Imageamento por Ressonância Magnética , Portadores de Fármacos/química , Feminino , Peróxido de Hidrogênio , Tamanho da Partícula , Camundongos Nus
2.
Front Cell Dev Biol ; 11: 1191074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842089

RESUMO

Background: Hepatocellular Carcinoma (HCC) is a common lethal digestive system tumor. The oxidative stress mechanism is crucial in the HCC genesis and progression. Methods: Our study analyzed single-cell and bulk sequencing data to compare the microenvironment of non-tumor liver tissues and HCC tissues. Through these analyses, we aimed to investigate the effect of oxidative stress on cells in the HCC microenvironment and identify critical oxidative stress response-related genes that impact the survival of HCC patients. Results: Our results showed increased oxidative stress in HCC tissue compared to non-tumor tissue. Immune cells in the HCC microenvironment exhibited higher oxidative detoxification capacity, and oxidative stress-induced cell death of dendritic cells was attenuated. HCC cells demonstrated enhanced communication with immune cells through the MIF pathway in a highly oxidative hepatoma microenvironment. Meanwhile, using machine learning and Cox regression screening, we identified PRDX1 as a predictor of early occurrence and prognosis in patients with HCC. The expression level of PRDX1 in HCC was related to dysregulated ribosome biogenesis and positively correlated with the expression of immunological checkpoints (PDCD1LG2, CTLA4, TIGIT, LAIR1). High PRDX1 expression in HCC patients correlated with better sensitivity to immunotherapy agents such as sorafenib, IGF-1R inhibitor, and JAK inhibitor. Conclusion: In conclusion, our study unveiled variations in oxidative stress levels between non-tumor liver and HCC tissues. And we identified oxidative stress gene markers associated with hepatocarcinogenesis development, offering novel insights into the oxidative stress response mechanism in HCC.

3.
Curr Protein Pept Sci ; 24(8): 666-683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37587817

RESUMO

AIMS: To reveal the prognostic role of unfolded protein response (UPR) -related genes in hepatocellular carcinoma (HCC). BACKGROUND: Hepatocellular carcinoma is a genetically heterogeneous tumor, and the prediction of its prognosis remains a challenge. Studies elucidating the molecular mechanisms of UPR have rapidly increased. However, the UPR molecular subtype characteristics of the related genes in HCC progression have yet to be thoroughly studied. OBJECTIVE: Conducting a comprehensive assessment of the prognostic signature of genes related to the UPR in patients with HCC can advance our understanding of the cellular processes contributing to the progression of HCC and offer innovative strategies in precise therapy. METHODS: Based on the gene expression profiles associated with UPR in HCC, we explored the molecular subtypes mediated by UPR-related genes and constructed a UPR-related genes signature that could precisely predict the prognosis for HCC. RESULTS: Using microarray data of HCC patients, differentially expressed UPR-related genes (DEGs) were discovered in malignancies and normal tissues. The HCC was classified into two molecular subtypes by the NMF algorithm based on DEGs modification of the UPR. Moreover, we developed a UPR-related model for predicting HCC patients' prognosis. The robustness of the UPR- related model was confirmed in external validation. Moreover, we analyzed immune responses in different risk groups. Analysis of immune functions revealed that Treg, Macrophages, aDCs, and MHC class-I were significantly up-regulated in high-risk HCC. At the same time, cytolytic activity and type I and II INF response were higher in a low-risk subgroup. CONCLUSION: This study identified two UPR molecular subtypes of HCC and developed a ten-gene HCC prognostic signature model (EXTL3, PPP2R5B, ZBTB17, CCT3, CCT4, CCT5, GRPEL2, HSP90AA1, PDRG1, and STC2), which can robustly forecast the progression of HCC.

4.
J Colloid Interface Sci ; 651: 76-92, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37540932

RESUMO

One of the major challenges in effective cancer therapy arises because of the hypoxic microenvironment in the tumor. This compromises the efficacy of both chemo- and radiotherapy, and thus hinders patient outcomes. To solve this problem, we constructed polydopamine (PDA)-cloaked Fe-based metal organic frameworks (MOFs) loaded with d-arginine (d-Arg), glucose oxidase (GOX), and the chemotherapeutic drug tirapazamine (TPZ). These offer simultaneous multifaceted therapy combining chemodynamic therapy (CDT)/radiotherapy (RT)/starvation therapy (ST)/gas therapy (GT) and chemotherapy. The particles further can act as contrast agents in magnetic resonance imaging. GOX catalyses the conversion of endogenous glucose and O2 to hydrogen peroxide and gluconic acid, blocking the cells' energy supply and providing ST. With the resultant acidification of the local environment, the breakdown of the MOF releases TPZ (for chemotherapy) and Fe3+, which reacts with H2O2 to produce reactive oxygen species and thus stimulates the conversion of d-Arg to NO for GT and RT sensitization. The PDA coating not only seals the pores and chelates Fe3+ to enhance the T1-weighted magnetic resonance imaging (MRI) properties, but also is used to graft folate bovine serum albumin (FA-BSA) and thereby target the tumor site. The combined administration of low doses of X-ray irradiation and nanoparticles reduces the side effects on healthy tissue and can prevent lung metastases in mice. This work highlights the synergistic treatment of osteosarcoma via ST/GT/CDT/RT/MRI/ chemotherapy using a PDA-cloaked MOF system.


Assuntos
Neoplasias Ósseas , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Osteossarcoma , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Microambiente Tumoral
5.
J Control Release ; 359: 132-146, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269965

RESUMO

Primary central nervous system lymphoma (PCNSL) is an extremely malignant CNS tumor with high incidence and mortality rates. Its chemotherapy in the clinic has been restricted owing to unsatisfactory drug distribution in the cerebral tissues. In this study, a redox-responsive prodrug of disulfide-lenalidomide-methoxy polyethylene glycol (LND-DSDA-mPEG) was successfully developed for the cerebral delivery of lenalidomide (LND), and methotrexate (MTX) via subcutaneous (s.c.) administration at the neck for combined anti-angiogenesis and chemotherapy on PCNSL. Both the subcutaneous xenograft tumor model and orthotopic intracranial tumor model demonstrated that the co-delivery of LND and MTX nanoparticles (MTX@LND NPs) may significantly inhibit the growth of lymphoma and effectively prevent liver metastasis by downregulating CD31 and VEGF expression. Moreover, an orthotopic intracranial tumor model further verified that through s.c. administration at the neck, redox-responsive MTX@LND NPs could bypass the blood-brain barrier (BBB), efficiently distribute into brain tissues, and effectively inhibit lymphoma growth in the brain, as detected by magnetic resonance imaging (MRI). Taken together, this biodegradable, biocompatible, and redox-responsive nano-prodrug with highly effective targeted delivery of LND and MTX in the brain through the lymphatic vasculature may provide a facile and feasible treatment strategy for PCNSL in the clinic.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Linfoma , Pró-Fármacos , Humanos , Metotrexato , Pró-Fármacos/uso terapêutico , Lenalidomida/uso terapêutico , Linfoma/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Oxirredução
6.
ACS Nano ; 17(11): 10925-10937, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219600

RESUMO

Immunotherapy as an alternative treatment strategy for B-cell lymphoma is undesirable because of tumor heterogeneity and immune surveillance. Spermidine (SPM), as a regulator of the tumor microenvironment (TME), can facilitate the release of damage-associated molecular patterns (DAMPs) from cancer cells, promote immune recognition, and thus alleviate immune surveillance in the TME. Hence, in this work, self-assembled spermidine-based metal-immunopeptide nanocomplexes (APP-Fe NCs; APP is anti-programmed death ligand-1 peptide) with pH-responsive release kinetics were prepared via the flash nanocomplexation (FNC) technique based on the noncovalent interaction between APP-SPM-dextran (DEX) and sodium tripolyphosphate (TPP) and coordination between Fe3+ and TPP. An in vitro study suggested that APP-Fe NCs effectively induce strong oxidative stress and mitochondrial dysfunction and subsequently lead to ferroptosis in cells by interfering with homeostasis in lymphoma cells. Further investigation on lymphoma mice models demonstrated that APP-Fe NCs effectively inhibited the growth and liver metastasis of lymphomas. Mechanistically, by triggering ferroptosis in tumor tissues, these spermidine-containing APP-Fe NCs efficiently facilitated the release of DAMPs and ultimately reshaped TME to enhance immunotherapy efficacy in lymphoma. Combined with its good histocompatibility and facile preparation technique, this pH-responsive APP-Fe NCs with regulation on TME may hold potential for cascade amplification on the combinative immunotherapy of lymphoma in the clinic.


Assuntos
Linfoma , Neoplasias , Animais , Camundongos , Espermidina/farmacologia , Microambiente Tumoral , Linfoma/tratamento farmacológico , Imunoterapia , Alarminas , Linhagem Celular Tumoral
7.
Aging (Albany NY) ; 15(8): 3064-3093, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a lethal tumor. Its prognosis prediction remains a challenge. Meanwhile, cellular senescence, one of the hallmarks of cancer, and its related prognostic genes signature can provide critical information for clinical decision-making. METHOD: Using bulk RNA sequencing and microarray data of HCC samples, we established a senescence score model via multi-machine learning algorithms to predict the prognosis of HCC. Single-cell and pseudo-time trajectory analyses were used to explore the hub genes of the senescence score model in HCC sample differentiation. RESULT: A machine learning model based on cellular senescence gene expression profiles was identified in predicting HCC prognosis. The feasibility and accuracy of the senescence score model were confirmed in external validation and comparison with other models. Moreover, we analyzed the immune response, immune checkpoints, and sensitivity to immunotherapy drugs of HCC patients in different prognostic risk groups. Pseudo-time analyses identified four hub genes in HCC progression, including CDCA8, CENPA, SPC25, and TTK, and indicated related cellular senescence. CONCLUSIONS: This study identified a prognostic model of HCC by cellular senescence-related gene expression and insight into novel potential targeted therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Genes cdc , Prognóstico , Senescência Celular/genética
8.
Bioresour Technol ; 364: 128020, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162781

RESUMO

In order to meet the challenge of enzyme catalysis of waste lignin, laccase (LAC)- guaiacyl(G)-type monomers noncovalent supramolecular system (LGS) were constructed for conversion of lignin. In this contribution, the catalytic effect of LGS formed by LAC and G-type monomers was studied. LAC changes the secondary structure conformation of its binding site to accommodate the G-type monomer, which is bound by hydrogen bonding and hydrophobic interactions. A mechanistic study highlights that the non-covalent complexation accelerates the internal electron transfer rate of LGS and syringol substrate for subsequent coupling reactions. In the presence of guaiacol/4-ethylguaiacol/vanillin-LAC, the conversion of dealkali lignin were 16.44, 29.12 and 22.72, respectively, higher than that in the presence of LAC alone. And the product of syringyl monomer was significantly increased in the actual lignin catalysis. Our work explains the mechanisms underlying existing enzyme-substrate interactions and enhanced catalytic system can be used for efficient utilization of waste.

9.
Chem Biodivers ; 18(2): e2000944, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33411381

RESUMO

Genistein (GS) exhibits various biological activities, but its clinical application is limited because of the low bioavailability. In this study, a GS-adenine pharmaceutical complex was prepared through solvent evaporation to improve the bioavailability of GS, and a molecular model of a two-component supramolecular pharmacological transport mechanism was established. The structure of GS-adenine was characterized, in addition, interaction patterns between GS and adenine were investigated using density functional theory. The results showed that the solubility of GS-adenine was five times higher than that of GS, and the cumulative release rate of GS-adenine was 86 %. The results of fluorescence spectroscopy and molecular dynamic simulations showed that GS-adenine bound to the Sudlow's site I of HSA mainly through hydrophobic interactions. This study provides a useful reference for synthesizing pharmaceutical complexes to improve solubility and for exploring the mechanism of multiple pharmaceutical components in vivo.


Assuntos
Adenina/química , Genisteína/química , Inibidores de Proteínas Quinases/química , Adenina/metabolismo , Genisteína/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Albumina Sérica Humana/metabolismo , Solubilidade
10.
J Cell Physiol ; 234(11): 19167-19179, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30941765

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are herpesviruses associated with human malignancies. As exosomes can shuttle many herpesvirus-associated biomolecules from host cells to recipient cells, the exosomal pathway is utilized by herpesviruses to achieve extensive infections and even oncogenesis. In this review, we discuss the oncogenic biomolecules present in exosomes derived from KSHV- and EBV-infected cells. Moreover, oncogenesis via exosomal biomolecules mainly occurs through three processes, including regulation of downstream signals, promotion of immune dysfunction and transformation of cells. Also, the exosomes may provide diagnostic markers and therapeutic targets specific for KSHV- and EBV-associated malignancies.


Assuntos
Exossomos/virologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/patogenicidade , Neoplasias/virologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Exossomos/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Neoplasias/genética , Neoplasias/patologia
11.
RSC Adv ; 8(45): 25636-25644, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539791

RESUMO

A cyclodextrin aldehyde based molecularly imprinted polymer with thermally responsive Diels-Alder (DA) linkages of grafted furan-type dienes was polymerized. The synthesized DA-MIP has dienophile characteristics and the specific absorption of ethyl carbamate (EC) can be switched on or off simply by thermal adjustment to 130 °C and 60 °C, respectively. The imprinting factors (α) of the MIP and rDA-MIP to EC were 6.2 and 5.0, and the selection factors (ß) were 5.2 and 4.0, respectively. The restoration of the molecular target ratio was 88%, as determined by absorption and desorption experiments. The thermal restoration ratio, determined by thermal cycling experiments, was 78%. A new electrochemical sensor was prepared using the DA-MIP and its responsiveness for detecting trace amounts of EC was investigated. The results indicate that the electrode response has good affinity and excellent specific recognition performance for template molecular chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...