Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144941

RESUMO

The oxygen evolution reaction (OER) is a crucial reaction in water splitting, metal-air batteries, and other electrochemical conversion technologies. Rationally designed catalysts with rich active sites and high intrinsic activity have been considered as a hopeful strategy to address the sluggish kinetics for OER. However, constructing such active sites in non-noble catalysts still faces grand challenges. To this end, we fabricate a Ni2P@Fe2P core-shell structure with outperforming performance toward OER via chemical transformation of rationally designed Ni-MOF hybrid nanosheets. Specifically, the Ni-MOF nanosheets and their supported Fe-based nanomaterials were in situ transformed into porous Ni2P@Fe2P core-shell nanosheets composed of Ni2P and Fe2P nanodomains in homogenous dispersion via a phosphorization process. When employed as the OER electrocatalyst, the Ni2P@Fe2P core-shell nanosheets exhibits excellent OER performance, with a low overpotential of 238/247 mV to drive 50/100 mA cm-2, a small Tafel slope of 32.91 mV dec-1, as well as outstanding durability, which could be mainly ascribed to the strong electronic interaction between Ni2P and Fe2P nanodomains stabilizing more Ni and Fe atoms with higher valence. These high-valence metal sites promote the generation of high-active Ni/FeOOH to enhance OER activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...