Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.073
Filtrar
1.
J Stroke Cerebrovasc Dis ; 33(9): 107870, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004238

RESUMO

OBJECTIVES: The aim of this study was to investigate the prospective associations between plasma branched-chain amino acids (BCAAs) and the risk of ischemic stroke in men and women. METHODS: We conducted a nested case-control study within a community-based cohort in China. The cohort consisted of 15,926 participants in 2013-2018. A total of 321 ischemic stroke cases were identified during the follow up and individually matched with 321 controls by date of birth (±1 year) and sex. Females accounted for 55.8% (n = 358, 179 cases vs 179 controls) of the study population. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between plasma BCAAs and ischemic stroke risk by conditional logistic regression. RESULTS: Elevated plasma isoleucine was associated with a higher risk of ischemic stroke in women. The OR for the highest compared to the lowest quartile was 2.22 (95% CI: 1.11-4.44, P trend = 0.005) after adjustment for body mass index, education attainment, smoking, hypertension, renal function, menopause and physical activity. A similar association was found for total BCAAs (adjusted OR = 2.03, 95% CI: 1.05-3.95, P trend = 0.04). In contrast, no significant association of plasma BCAAs with ischemic stroke risk was observed in men. CONCLUSIONS: Plasma isoleucine and total BCAAs were significantly associated with ischemic stroke risk in women, but not in men, highlighting sex differences in BCAAs metabolism and stroke pathogenesis.

2.
Angew Chem Int Ed Engl ; : e202410145, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979674

RESUMO

Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO = 97.3%) to formate (FEformate = 93.5%) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.

3.
Plant Phenomics ; 6: 0200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978968

RESUMO

Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF1743, 2), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (R 2 = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the OsmtSSB1L gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.

4.
Mol Divers ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030284

RESUMO

Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF3-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF3. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 µg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.

5.
J Med Chem ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041307

RESUMO

Traditional antibody-drug conjugates (ADCs) mainly suppress tumor growth through either chemotherapy with cytotoxic payloads or immunotherapy with immuno-modulators. However, a single therapeutic modality may limit their exploration. Herein, we developed a new type of drug conjugate termed CAR-EDC (CAR-M-derived exosome-drug conjugate) by using CAR-exosomes from CAR-M cells as the targeting drug carrier that contains a high level of CXCL10. CAR-exosomes could significantly enhance the immunological activation and migratory capacity of T lymphocytes and promote their differentiation into CD8+ T cells. It also increased the proportion of M1 macrophages. The CAR-EDC, covalently loaded with SN-38, was internalized into Raji cells through endocytosis mediated by the CAR molecules. It exerted excellent antitumor activity in vivo by virtue of not only chemotherapy by SN38 but also immunotherapy by CXCL10-mediated antitumor immunity. Generally, this study provides an exosome-drug conjugate system with enhanced antitumor effects over traditional ADCs through the synergism of chemotherapy and immunotherapy.

6.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959216

RESUMO

The P2Y14 receptor has been proven to be a potential target for IBD. Herein, we designed and synthesized a series of 4-amide-thiophene-2-carboxyl derivatives as novel potent P2Y14 receptor antagonists based on the scaffold hopping strategy. The optimized compound 39 (5-((5-fluoropyridin-2-yl)oxy)-4-(4-methylbenzamido)thiophene-2-carboxylic acid) exhibited subnanomolar antagonistic activity (IC50: 0.40 nM). Moreover, compound 39 demonstrated notably improved solubility, liver microsomal stability, and oral bioavailability. Fluorescent ligand binding assay confirmed that 39 has the binding ability to the P2Y14 receptor, and molecular dynamics (MD) simulations revealed the formation of a unique intramolecular hydrogen bond (IMHB) in the binding conformation. In the experimental colitis mouse model, compound 39 showed a remarkable anti-IBD effect even at low doses. Compound 39, with a potent anti-IBD effect and favorable druggability, can be a promising candidate for further research. In addition, this work lays a strong foundation for the development of P2Y14 receptor antagonists and the therapeutic strategy for IBD.

7.
Heliyon ; 10(11): e32435, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961989

RESUMO

An efficient method was discovered for catalyzing the esterification under air using Novozym 435 to obtain pyridine esters. The following conditions were found to be optimal: 60 mg of Novozyme 435, 5.0 mL of n-hexane, a molar ratio of 2:1 for nicotinic acids (0.4 mmol) to alcohols (0.2 mmol), 0.25 g of molecular sieve 3A, a revolution speed of 150 rpm, a reaction temperature of 50 °C, and reaction time of 48 h. Under nine cycles of Novozym 435, the 80 % yield was consistently obtained. Optimum conditions were used to synthesize 23 pyridine esters, including five novel compounds. Among them, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) showed phenethyl nicotinate (3g), (E)-hex-4-en-1-yl nicotinate (3m), and octyl nicotinate (3n) possessed strong aromas. Thermogravimetric analysis (TG) revealed that the compounds 3g, 3m and 3n exhibited stability at the specified temperature. This finding provides theoretical support for adding pyridine esters fragrance to high-temperature processed food.

9.
Small ; : e2404290, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032148

RESUMO

The Ag cluster-POM assemblies have been shown to possess interesting and potentially useful properties. However, there is no precedent example of atomically precise Ag cluster-POM assemblies showing heterojunction effects in photocatalysis. Herein, the synthesis and total structure determination of the periodically distributed molecular heterojunction [Ag12(SCy)6(CH3CN)12(PW12O40)]n (Ag12-PW12) are reported. The assembly of Ag/W clusters into 3D network can endow the resulting binary structure with an aesthetic topology and unique physicochemical properties. More remarkably, the incorporation of Ag12 cluster with PW12 can efficiently facilitate the separation of photogenerated electrons and holes, thus significantly promoting the catalytic efficiency in selective oxidation of sulfides. The Ag12-PW12 heterojunction can be recovered and reused five times with no drastic change in the catalytic performance. This research is expected to assist in the rational design of cluster-based heterojunction catalysts. The increase of catalytic activity of the Ag12-PW12 assembly in comparison with the unassembled Ag12 and PW12 clusters is attributed to the synergistic effect of Ag12 and PW12 clusters, offering the splendid opportunity for deciphering structure-reactivity relationship of heterostructure-coupled photosystem.

10.
Nat Commun ; 15(1): 5962, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013901

RESUMO

Dual emission (DE) in nanoclusters (NCs) is considerably significant in the research and application of ratiometric sensing, bioimaging, and novel optoelectronic devices. Exploring the DE mechanism in open-shell NCs with doublet or quartet emissions remains challenging because synthesizing open-shell NCs is difficult due to their inherent instability. Here, we synthesize two dual-emissive M1Ag13(PFBT)6(TPP)7 (M = Pt, Pd; PFBT = pentafluorobenzenethiol; TPP = triphenylphosphine) NCs with a 7-electron open-shell configuration to reveal the DE mechanism. Both NCs comprise a crown-like M1Ag11 kernel with Pt or Pd in the center surrounded by five PPh3 ligands and two Ag(SR)3(PPh3) motifs. The combined experimental and theoretical studies revealed the origin of DE in Pt1Ag13 and Pd1Ag13. Specifically, the high-energy visible emission and the low-energy near-infrared emission arise from two distinct quartet excited states: the core-shell charge transfer and core-based states, respectively. Moreover, PFBT ligands are found to play an important role in the existence of DE, as its low-lying π* levels result in energetically accessible core-shell transitions. This novel report on the dual-quartet phosphorescent emission in NCs with an open-shell electronic configuration advances insights into the origin of dual-emissive NCs and promotes their potential application in magnetoluminescence and novel optoelectronic devices.

11.
Ann Hematol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012516

RESUMO

Acute myeloid leukemia (AML) is a notably lethal disease, characterized by malignant clonal proliferation of hematopoietic stem cells in the bone marrow. This study seeks to unveil potential therapeutic targets for AML, using a combined approach of microarray analysis and Mendelian randomization (MR). We collected data samples from the Gene Expression Omnibus (GEO) database and extracted pQTL data from genome-wide association studies (GWAS) to identify overlapping genes between the DEGs and GWAS data. Gene enrichment and pathway annotation analyses were performed on these genes. Furthermore, we validated gene expression levels and assessed their clinical relevance. By taking the intersection of these gene sets, we obtained a list of co-expressed genes, including four upregulated genes (REC8, TPM2, ZMIZ1, CD82) and two downregulated genes (IFNAR1, TMCO3). MR analysis demonstrated that genetically predicted protein levels of CD82, REC8, ZMIZ1, and TPM2 were significantly associated with increased odds of AML, while IFNAR1 and TMCO3 showed a protective effect. Gene ontology and KEGG pathway analyses revealed significant enrichment in functions related to female gamete generation, meiosis, p53 signaling pathway, and cardiac muscle contraction. Differences in immune cell profiles were observed between AML survivors and those with poor prognosis, including lower levels of neutrophils and higher levels of follicular helper T cells in the latter group. This study identifies a causal relationship between gene expression and AML and highlights the potential role of REC8 in leukemogenesis, possibly through its impact on gametocyte meiotic abnormalities. The findings provide new insights into the prevention and treatment of leukemia.

12.
Health Care Sci ; 3(2): 101-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38939613

RESUMO

Background: Although socioeconomic support is recommended for frailty management, its association with the prognosis of frailty is unclear. Methods: Using data from participants aged ≥65 years in the Chinese Longitudinal Healthy Longevity Survey (2008-2018), the associations between socioeconomic support (source of income, medical insurance, community support, living status), onset of prefrailty/frailty, and worsening of prefrailty, were analyzed using multinominal logistic regression models. The associations between self-reported low quality of life (QoL) and reversion of prefrailty/frailty were analyzed using multivariate logistic regression models. Associations with mortality risk were analyzed using Cox proportional hazard regression models. Results: A total of 13,859 participants (mean age: 85.8 ± 11.1 years) containing 2056 centenarians were included. Financial dependence was a risk factor for low QoL among prefrail/frail individuals, but not among robust individuals. Having commercial or other insurance, and receiving social support from the community were protective factors for low QoL among prefrail/frail individuals and for the worsening of prefrailty. Continuing to work was a risk factor for low QoL, but a protective factor for worsening of prefrailty. A negative association between continuing to work and mortality existed in prefrail individuals aged <85 years and ≥85 years. Living alone was a risk factor for low QoL, but was not significantly associated with frailty prognosis. Conclusions: Prefrail and frail individuals were vulnerable to changes in socioeconomic support and more sensitive to it compared with robust individuals. Preferential policies regarding financial support, social support, and medical insurance should be developed for individuals with frailty.

13.
Chem Sci ; 15(23): 8651-8663, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873071

RESUMO

Na3V2(PO4)3 (NVP) cathode materials with the advantages of long cycle life and superior thermal stability have been considered promising cathode candidates for SIBs. However, the unsatisfactory energy density derived from low theoretical capacity and operating voltage (3.35 V vs. Na+/Na, based on the V3+/V4+ redox couple) inevitably limits their practical application. Therefore, the activation of the V4+/V5+ redox couple (∼4.0 V vs. Na+/Na) in NVP-based cathode materials to boost the energy density of SIBs has attracted extensive attention. Herein, we first analyze the challenges of activation of the V4+/V5+ redox couple in NVP-based cathode materials. Subsequently, the recent achievement of NVP-based cathode materials with activated V4+/V5+ redox reactions for SIBs is overviewed. Finally, further research directions of high voltage V4+/V5+ redox reactions in NVP-based cathodes are proposed. This review provides valuable guidance for developing high energy density NVP-based cathode materials for SIBs.

14.
J Fluoresc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884826

RESUMO

Two novel naphthalimide derivatives PTZNI-Cz and PTZNI-TPA were successfully designed and synthesized, in which phenothiazine, triphenylamine and carbazole were used as electron donors and naphthalimide was used as the electron acceptor. Their photophysical, electrochemical, and thermal properties were investigated. These derivatives showed remarkable aggregation-induced emission (AIE) effect. Furthermore, the maximum emission peaks of PTZNI-Cz and PTZNI-TPA in the thin film state are at 610 nm and 623 nm respectively, which is typical of red fluorescent materials.

15.
Chem Sci ; 15(22): 8372-8379, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846395

RESUMO

Here we report a diachronic evolvement from tetra-icosahedral Au30Ag12(C[triple bond, length as m-dash]CR)24 to quasi-hcp (hexagonal close-packed) Au47Ag19(C[triple bond, length as m-dash]CR)32 via a one-step reduction, in which the size/structure conversion of the two clusters is not a typical Oswald growth process, but involves interface shrinking followed by core rearrangement and surface polymerization. Au30Ag12(C[triple bond, length as m-dash]CR)24 has an aesthetic Au18Ag8 kernel that is composed of four interpenetrating Au10Ag3 icosahedra, while Au47Ag19(C[triple bond, length as m-dash]CR)32 has a twisted Au19 core capped by a Au12Ag19 shell that are stacked in a layer-by-layer manner with a quasi-hcp pattern. The discovery of the two clusters not only provides further evidence for icosahedral clusters with longer excited-state lifetime compared to hcp-like clusters, but also discloses a double increase in catalytic reactivity for electrocatalytic oxidation of ethanol over quasi-hcp clusters in comparison with icosahedral clusters. This work provides the rationale for reversing the bottom-up growth process to remake bimetal clusters.

16.
Adv Sci (Weinh) ; : e2402716, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896789

RESUMO

Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid growth and early metastasis and is susceptible to treatment resistance and recurrence. Understanding the intra-tumoral spatial heterogeneity in SCLC is crucial for improving patient outcomes and clinically relevant subtyping. In this study, a spatial whole transcriptome-wide analysis of 25 SCLC patients at sub-histological resolution using GeoMx Digital Spatial Profiling technology is performed. This analysis deciphered intra-tumoral multi-regional heterogeneity, characterized by distinct molecular profiles, biological functions, immune features, and molecular subtypes within spatially localized histological regions. Connections between different transcript-defined intra-tumoral phenotypes and their impact on patient survival and therapeutic response are also established. Finally, a gene signature, termed ITHtyper, based on the prevalence of intra-tumoral heterogeneity levels, which enables patient risk stratification from bulk RNA-seq profiles is identified. The prognostic value of ITHtyper is rigorously validated in independent multicenter patient cohorts. This study introduces a preliminary tumor-centric, regionally targeted spatial transcriptome resource that sheds light on previously unexplored intra-tumoral spatial heterogeneity in SCLC. These findings hold promise to improve tumor reclassification and facilitate the development of personalized treatments for SCLC patients.

17.
Chemosphere ; 361: 142525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838867

RESUMO

Pseudomonas sp. ZHL02, removing nitrogen via ammonia nitrogen (NH4+) → hydroxylamine (HN2OH) → nitrite (NO2-) → nitrate (NO3-) → NO2- → nitric oxide (NO) → nitrous oxide (N2O) pathway was employed for getting in-depth information on the heterotrophic nitrification-aerobic denitrification (HNAD) pathway from carbon oxidation, nitrogen conversion, electron transport process, enzyme activity, as well as gene expression while sodium succinate, sodium citrate, and sodium acetate were utilized as the carbon sources. The nitrogen balance analysis results demonstrated that ZHL02 mainly removed NH4+-N through assimilation. The carbon source metabolism resulted in the discrepancies in electron transport chain and nitrogen removal between different HNAD bacteria. Moreover, the prokaryotic strand-specific transcriptome method showed that, amo and hao were absent in ZHL02, and unknown genes may be involved in ZHL02 during the HNAD process. As a fascinating process for removing nitrogen, the HNAD process is still puzzling, and the relationship between carbon metabolism and nitrogen metabolism among different HNAD pathways should be studied further.


Assuntos
Carbono , Desnitrificação , Processos Heterotróficos , Nitrificação , Nitrogênio , Carbono/metabolismo , Nitrogênio/metabolismo , Pseudomonas/metabolismo , Aerobiose , Nitritos/metabolismo , Nitratos/metabolismo
18.
J Colloid Interface Sci ; 673: 690-699, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901359

RESUMO

Low photo-induced carrier recombination rate, exceptional light absorption, and advantageous recycling performance are crucial attributes of semiconductor photocatalyst for wastewater purification. Herein, based on in-situ reaction, close-contact S-scheme bismuth chromate/bismuth oxide/ferroferric oxide@porous carbon microspheres (Cr2Bi3O11-Bi2O3/Fe3O4@PCs) (F-CBFP) was fabricated using alginates as precursor. Due to the abundance of functional groups on the porous carbon (PCs), Bi2O3 and Cr2Bi3O11 nanoparticles (NPs) are in situ deposited onto the highly conductive 3D magnetic porous Fe3O4@PCs microsphere surface, which not only form tight interfacial contacts and reduces interfacial potential barriers but also prevent agglomeration or shedding of the NPs during photocatalytic reactions. Moreover, density functional theory (DFT) calculations further confirm that the formation of a robust built-in electric field (BIEF) within F-CBFP prompts photo-induced electrons in the conduction band (CB) of Bi2O3 to combine with holes in the valence band (VB) of Cr2Bi3O11, effectively constructing a S-scheme heterojunction system. Also, Fe3O4 can act as a Fenton catalyst, activating the H2O2 generated by Cr2Bi3O11 under illumination. In wastewater treatment, the obtained F-CBFP shows remarkable photo-Fenton degradation (towards methyl orange (97.8 %, 60 min) and tetracycline hydrochloride (95.3 %, 100 min)) and disinfection performance (100 % E. coli inactivation), and exceptional cyclic stability.

19.
Eur J Med Chem ; 275: 116593, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38889609

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. A total of 28 new molecular entities (NMEs) were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cardiovascular diseases from 2011 to 2023. Approximately 25 % of the medications were sanctioned for the management of diverse vascular disorders. The other major therapeutic areas of focus included antilipemic agents (15 %), blood pressure disease (11 %), heart failure, hyperkalemia, and cardiomyopathy (7-8% each). Among all the approved drugs, there are a total of 22 new chemical entities (NCEs), including inhibitors, agonists, polymers, and inorganic compounds. In addition to NCEs, 6 biological agents (BLAs), including monoclonal antibodies, small interfering RNAs (siRNAs), and antisense oligonucleotides, have also obtained approval for the treatment of cardiovascular diseases. From this perspective, approved NCEs are itemized and discussed based on their disease, targets, chemical classes, major drug metabolites, and biochemical and pharmacological properties. Systematic analysis has been conducted to examine the binding modes of these approved drugs with their targets using cocrystal structure information or docking studies to provide valuable insights for designing next-generation agents. Furthermore, the synthetic approaches employed in the creation of these drug molecules have been emphasized, aiming to inspire the development of novel, efficient, and applicable synthetic methodologies. Generally, the primary objective of this review is to provide a comprehensive examination of the clinical applications, pharmacology, binding modes, and synthetic methodologies employed in small-molecule drugs approved for treating CVD. This will facilitate the development of more potent and innovative therapeutics for effectively managing cardiovascular diseases.


Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares , Química Farmacêutica , Aprovação de Drogas , United States Food and Drug Administration , Humanos , Estados Unidos , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico
20.
Heliyon ; 10(11): e31654, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828289

RESUMO

Osteoarthritis is a chronic degenerative disease based on the degeneration and loss of articular cartilage. Inflammation and aging play an important role in the destruction of the extracellular matrix, in which microRNA (miRNA) is a key point, such as miRNA-34a-5p. Upregulation of miRNA-34a-5p was previously reported in a rat OA model, and its inhibition significantly suppressed interleukin (IL)-1ß-induced apoptosis in rat chondrocytes. However, Oxidative stress caused by reactive oxygen species (ROS) can exacerbate the progression of miRNA regulated OA by mediating inflammatory processes. Thus, oxidative stress effects induced via tert-butyl hydroperoxide (tBHP) in human chondrocytes were assessed in the current research by evaluating mitochondrial ROS production, mitochondrial cyclooxygenase (COX) activity, and cell apoptosis. We also analyzed the activities of antioxidant enzymes including glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD). Additionally, inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, and IL-24, which contribute to OA development, were detected by enzyme-linked immunosorbent assay (ELISA). The results of this study indicated that miR-34a-5p/silent information regulator 1 (SIRT1)/p53 axis was involved in the ROS-induced injury of human chondrocytes. Moreover, dual-luciferase assay revealed that SIRT1 expression was directly regulated by miR-34a-5p, indicating the presence of a positive feedback loop in the miR-34a-5p/SIRT1/p53 axis that plays an important role in cell survival. However, ROS disrupted the miR-34a-5p/SIRT1/p53 axis, leading to the development of OA, and articular injection of SIRT1 agonist, SRT1720, in a rat model of OA effectively ameliorated OA progression in a dose-dependent manner. Our study confirms that miRNA-34a-5p could participate in oxidative stress responses caused by ROS and further regulate the inflammatory process via the SIRT1/p53 signaling axis, ultimately affecting the onset of OA, thus providing a new treatment strategy for clinical treatment of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...