RESUMO
Ovarian cancer (OC) is one of the most prevalent and lethal malignancies affecting the female reproductive system, due to its tendency for metastasis and recurrence. This study identified the overexpression of LINC01320 (or long intergenic nonprotein coding RNA 1320) in tissues of ovarian cancer through the analysis of patient samples and online datasets. In vitro and in vivo experiments demonstrate that silencing of LINC01320 expression led to inhibition of proliferation and metastasis of OC cells. RNA pull-down followed by liquid chromatography tandem mass spectrometry (RNA pull-down-LC-MS/MS) revealed that LINC01320 interacted with purine-rich element binding protein B (PURB), a transcriptional repressor. Furthermore, the RNA-seq analysis identified damage-specific DNA binding protein 2 (DDB2) as a major common target of LINC01320 and PURB. Mechanistically, LINC01320 could recruit PURB to the promoter region of DDB2 to repress DDB2 transcription; thus, promoting the expression of NEDD4L and impeding the TGF-ß/SMAD signaling pathway, and ultimately facilitating the progression of OC. Finally, rescue experiments confirmed the involvement of the DDB2/NEDD4L/TGF-ß axis in LINC01320-mediated OC progression. In conclusion, this study unveils for the first time the pivotal function of the LINC01320/PURB/DDB2/NEDD4L/TGF-ß axis and explores its prospective clinical implications in OC.
Assuntos
Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases Nedd4 , Neoplasias Ovarianas , RNA Longo não Codificante , Fator de Crescimento Transformador beta , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Movimento Celular/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Transdução de Sinais , Animais , Camundongos , Camundongos NusRESUMO
Soil microbial growth, a vital biogeochemical process, governs both the accrual and loss of soil carbon. Here, we investigate the biogeography of soil microbiome potential growth rates and show that microbiomes in resource-rich (high organic matter and nutrients) and acid-neutral soils from cold and humid regions exhibit high potential growth. Conversely, in resource-poor, dry, hot, and hypersaline soils, soil microbiomes display lower potential growth rates, suggesting trade-offs between growth and resource acquisition or stress tolerance. In addition, the potential growth rates of soil microbiomes positively correlates with genome size and the number of ribosomal RNA operons but negatively correlates with optimum temperature, biomass carbon-to-phosphorus and nitrogen-to-phosphorus ratios. The spatial variation of microbial potential growth rates aligns with several macroecological theories. These findings not only enhance our understanding of microbial adaptation to diverse environments but also aid in realistically parameterizing microbial physiology in soil carbon cycling models.
Assuntos
Carbono , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/metabolismo , Carbono/metabolismo , Fósforo/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Biomassa , Temperatura , Ciclo do Carbono , RNA Ribossômico 16S/genéticaRESUMO
Sorting out plastic waste (PW) from municipal solid waste (MSW) by material type is crucial for reutilization and pollution reduction. However, current automatic separation methods are costly and inefficient, necessitating an advanced sorting process to ensure high feedstock purity. This study introduces a Swin Transformer-based model for effectively detecting PW in real-world MSW streams, leveraging both morphological and material properties. And, a dataset comprising 3560 optical images and infrared spectra data was created to support this task. This vision-based system can localize and classify PW into five categories: polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS). Performance evaluations reveal an accuracy rate of 99.75% and a mean Average Precision (mAP50) exceeding 91%. Compared to popular convolutional neural network (CNN)-based models, this well-trained Swin Transformer-based model offers enhanced convenience and performance in five-category PW detection task, maintaining a mAP50 over 80% in the real-life deployment. The model's effectiveness is further supported by visualization of detection results on MSW streams and principal component analysis of classification scores. These results demonstrate the system's significant effectiveness in both lab-scale and real-life conditions, aligning with global regulations and strategies that promote innovative technologies for plastic recycling, thereby contributing to the development of a sustainable circular economy.
RESUMO
OBJECTIVE: To evaluate the performance of convolutional neural networks (CNNs) for the automated detection and classification of mandibular fractures on multislice spiral computed tomography (MSCT). STUDY DESIGN: MSCT data from 361 patients with mandibular fractures were retrospectively collected. Two experienced maxillofacial surgeons annotated the images as ground truth. Fractures were detected utilizing the following models: YOLOv3, YOLOv4, Faster R-CNN, CenterNet, and YOLOv5-TRS. Fracture sites were classified by the following models: AlexNet, GoogLeNet, ResNet50, original DenseNet-121, and modified DenseNet-121. The performance was evaluated for accuracy, sensitivity, specificity, and area under the curve (AUC). AUC values were compared using the Z-test and P values <.05 were considered to be statistically significant. RESULTS: Of all of the detection models, YOLOv5-TRS obtained the greatest mean accuracy (96.68%). Among all of the fracture subregions, body fractures were the most reliably detected (with accuracies of 88.59%-99.01%). For classification models, the AUCs for body fractures were higher than those of condyle and angle fractures, and they were all above 0.75, with the highest AUC at 0.903. Modified DenseNet-121 had the best overall classification performance with a mean AUC of 0.814. CONCLUSIONS: The modified CNN-based models demonstrated high reliability for the diagnosis of mandibular fractures on MSCT.
RESUMO
Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. However, inevitable contaminants, including mycotoxins, in medicinal herbs can cause serious problems for humans despite their health benefits. The increasing consumption of medicinal plants has made their use a public health problem due to the lack of effective surveillance of the use, efficacy, toxicity, and quality of these natural products. Radix Dipsaci is commonly utilized in traditional Chinese medicine and is susceptible to contamination with mycotoxins. Here, we evaluated the mycotoxins, mycobiota and toxigenic fungi in the traditional medicine Radix Dipsaci. A total of 28 out of 63 Radix Dipsaci sample batches (44.4%) were found to contain mycotoxins. Among the positive samples, the contamination levels of AFB1, AFG1, AFG2, and OTA in the positive samples ranged from 0.52 to 32.13 µg/kg, 5.14 to 20.05 µg/kg, 1.52 to 2.33 µg/kg, and 1.81 to 19.43 µg/kg respectively, while the concentrations of ZEN and T-2 were found to range from 2.85 to 6.33 µg/kg and from 2.03 to 2.53 µg/kg, respectively. More than 60% of the contaminated samples were combined with multiple mycotoxins. Fungal diversity and community were altered in the Radix Dipsaci contaminated with various mycotoxins. The abundance of Aspergillus and Fusarium increased in the Radix Dipsaci contaminated with aflatoxins (AFs) and ZEN. A total of 95 strains of potentially toxigenic fungi were isolated from the Radix Dipsaci samples contaminated with mycotoxins, predominantly comprising Aspergillus (73.7%), Fusarium (20.0%), and Penicillium (6.3%). Through morphological identification, molecular identification, mycotoxin synthase gene identification and toxin production verification, we confirmed that AFB1 and AFG1 primarily derive from Aspergillus flavus, OTA primarily derives from Aspergillus westerdijkiae, ZEN primarily derives from Fusarium oxysporum, and T-2 primarily derives from Fusarium graminearum in Radix Dipsaci. These data can facilitate our comprehension of prevalent toxigenic fungal species and contamination levels in Chinese herbal medicine, thereby aiding the establishment of effective strategies for prevention, control, and degradation to mitigate the presence of fungi and mycotoxins in Chinese herbal medicine.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Radix Dipsaci, a traditional Chinese medicine with a history spanning over 2000 years in China, is widely recognized for its hepatorenal tonic properties, musculoskeletal fortifying effects, fracture healing capabilities, and its frequent application in the treatment of osteoporosis. Like many traditional Chinese herbal medicines, preparations from Radix Dipsaci are at risk of contamination by harmful mycotoxins such as aflatoxin B1. AIMS OF THE STUDY: This study aims to evaluate the impact of aflatoxin B1 contamination on Radix Dipsaci in terms of changes in quality, efficacy of anti-osteoporosis and hepatorenal toxicity. MATERIALS AND METHODS: The contamination rates and levels of major mycotoxins were determined in 45 batches of Radix Dipsaci samples using UPLC-MS/MS analysis. The total saponin content and the levels of akebia saponin D in Radix Dipsaci and its decoctions were evaluated through high-performance liquid chromatography (HPLC) analysis. Differences in secondary metabolites between samples without any mycotoxin contamination (N-RD) and those contaminated solely by aflatoxin B1 (AFB1-RD) were compared using metabolomics sequencing and analysis. The anti-osteoporotic efficacy of Radix Dipsaci contaminated with aflatoxin B1 was assessed in a murine model of retinoic acid-induced osteoporosis by quantifying bone mineral content and bone mineral density using dual-energy X-ray absorptiometry. Additionally, the hepatorenal toxicity of Radix Dipsaci contaminated with aflatoxin B1 was evaluated using hematoxylin-eosin staining and enzyme-linked immunosorbent assay (ELISA). RESULTS: The results indicated that aflatoxin B1 (AFB1) was the most frequently detected mycotoxin, found in 37.7% of the Radix Dipsaci samples. AFB1 contamination significantly altered the secondary metabolites of Radix Dipsaci. Specifically, there was a notable decrease in the levels of total saponins and akebia saponin D in the AFB1-contaminated samples, which exhibited a negative correlation with the levels of AFB1 contamination. However, the administration of a water decoction from AFB1-contaminated Radix Dipsaci did not result in significant improvements in bone mineral density, bone mineral salt content, the trabecular number, trabecular area, proportion of trabecular bone volume/tissue volume and trabecular separation in an osteoporosis mouse model. Additionally, we observed that approximately 16.04% of AFB1 could migrate from the raw herbs into the decoction, leading to hepatocyte and kidney cell damage, as well as increased levels of the oxidative stress molecule malondialdehyde and pro-inflammatory cytokines in the liver and kidney tissues of the osteoporosis model mice. CONCLUSION: In summary, Radix Dipsaci is highly susceptible to mycotoxin contamination, particularly aflatoxin B1. The contamination of Radix Dipsaci with AFB1 not only impacts their saponin content and anti-osteoporosis effect but also induces hepatotoxicity and nephrotoxicity.
RESUMO
Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells. We show that NKG2A knockout (KO) enhances the anti-tumor and anti-viral capabilities of PSC-NK cells. NKG2A KO endows PSC-NK cells with higher cytotoxicity against HLA-E-expressing glioblastoma (GBM) cells, leukemia cells, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells in vitro. The NKG2A KO PSC-NK cells also exerted potent anti-tumor activity in vivo, leading to substantially suppressed tumor progression and prolonged survival of tumor-bearing mice in a xenograft GBM mouse model. These findings underscore the potential of PSC-NK cells with immune checkpoint KO as a promising cell-based immunotherapy. The unlimited supply and ease of genetic engineering of hPSCs makes genetically engineered PSC-NK an attractive option for easily accessible "off-the-shelf" cancer immunotherapy.
RESUMO
Chiral phosphorus compounds with contiguous P,C-stereogenic centers are widely found in chiral ligands. The synthesis of these skeletons has been scarcely reported. Herein, we developed a Pd(II)-catalyzed chemo-, diastereo-, and enantioselective arylation of diisopropyl phosphinamide enabled by 2-pyridinylisopropyl (PIP) auxiliary and (S)-6,6'-(CN)2-SPINOL. A range of chiral phosphinamides containing contiguous P,C-stereocenters were obtained in good yields (up to 85%) with excellent enantioselectivities (up to >99% ee).
RESUMO
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
RESUMO
Background: Lung cancer causes significant mortality, with invasion and metastasis being the main features that cause most cancer deaths. Lymph node metastasis is the primary metastatic route in non-small cell carcinoma (NSCLC) and influences the staging and prognosis of NSCLC. Cumulative studies have reported that Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the progression of various cancers. However, few studies have discussed the function of CEACAM1 in lymphangiogenesis in NSCLC. Here, we examined how CEACAM1 influences lymphangiogenesis in NSCLC. Methods: A total of 30 primary squamous cell carcinoma (LUSC) patients diagnosed with LN metastasis were prospectively selected. LUSC tumor tissues, para-cancerous tissues, and positive lymph node tissues were harvested. The expression and subcellular location of CEACAM1, CD31, and LVYE1 in clinical samples were detected by immunohistochemistry. Next, the CEACAM1 and hsa-miR-423-5p expressions were detected by qPCR. The protein expression of lymphangiogenesis-associated proteins and critical cytokines of the NF-κB pathway in HDLECs was detected by Western blot. A tube formation assay was performed to detect the lymphangiogenesis in different groups. The interaction between CEACAM1 and hsa-miR-423-5p was verified using a dual luciferase assay. Results: CEACAM1 was found to be a potential gene associated with lung cancer prognosis. It was positively correlated with angiogenesis and lymphangiogenesis. Then, we detected the function of CEACAM1 in lymphangiogenesis and found that CEACAM1 promoted lymphangiogenesis. hsa-miR-423-5p overexpression inhibited lymphangiogenesis via targeting CEACAM1. Finally, we observed that CEACAM1 can activate the NF-κB pathway and, therefore, promote lymphangiogenesis. Conclusion: We found that CEACAM1 enhanced lymphangiogenesis in NSCLC via NF-kB activation and was repressed by miR-423-5p. This suggests the value of CEACAM1 as a new therapeutic marker in NSCLC.
RESUMO
High-resolution and high-throughput genotype-to-phenotype studies in fish are rapidly advancing, driven by innovative technologies that aim to address the challenges of modern breeding models. In recent years, machine vision and deep learning techniques, particularly convolutional neural networks (CNNs), have achieved significant success in image recognition and segmentation. Moreover, qualitative and quantitative analysis of disease resistance has always been a crucial field of research in genetics. This motivation has led us to investigate the potential of large yellow croaker visceral white-nodules disease (VWND) in encoding information on disease resistance for the task of accession classification. In this study, we proposed an image segmentation framework for the feature extraction of the spleen after VWND infection based on machine vision. We utilized deep CNNs and threshold segmentation for automatic feature learning and object segmentation. This approach eliminates subjectivity and enhances work efficiency compared to using hand-crafted features. Additionally, we employed spleen-related traits to conduct genome-wide association analysis (GWAS), which led to the identification of 24 significant SNPs and 10 major quantitative trait loci. The results of function enrichment analysis on candidate genes also indicated potential relationships with immune regulation mechanisms. Furthermore, we explored the use of genomic selection (GS) technology for phenotype prediction of extreme individuals, which further supports the predictability of spleen-related phenotypes for VWND resistance in large yellow croakers. Our findings demonstrate that artificial intelligence (AI)-based phenotyping approaches can deliver state-of-the-art performance for genetics research. We hope this work will provide a paradigm for applying deep learning and machine vision to phenotyping in aquaculture species.
RESUMO
Vibegron functions as a potent and selective ß3-adrenergic receptor agonist, with its chiral precursor (2S,3R)-aminohydroxy ester (1b) being crucial to its synthesis. In this study, loop engineering was applied to the carbonyl reductase (EaSDR6) from Exiguobacterium algae to achieve an asymmetric reduction of the (rac)-aminoketone ester 1a. The variant M5 (A138L/A190V/S193A/Y201F/N204A) was obtained and demonstrated an 868-fold increase in catalytic efficiency (kcat/Km = 260.3 s-1 mM-1) and a desirable stereoselectivity (>99% enantiomeric excess, e.e.; >99% diastereomeric excess, d.e.) for the target product 1b in contrast to the wild-type EaSDR6 (WT). Structural alignment with WT indicated that loops 137-154 and 182-210 potentially play vital roles in facilitating catalysis and substrate binding. Moreover, molecular dynamics (MD) simulations of WT-1a and M5-1a complex illustrated that M5-1a exhibits a more effective nucleophilic attack distance and more readily adopts a pre-reaction state. The interaction analysis unveiled that M5 enhanced hydrophobic interactions with substrate 1a on cavities A and B while diminishing unfavorable hydrophilic interactions on cavity C. Computational analysis of binding free energies indicated that M5 displayed heightened affinity towards substrate 1a compared to the WT, aligning with its decreased Km value. Under organic-aqueous biphasic conditions, the M5 mutant showed >99% conversion within 12 h with 300 g/L substrate 1a (highest substrate loading as reported). This study enhanced the catalytic performance of carbonyl reductase through functional loops engineering and established a robust framework for the large-scale biosynthesis of the vibegron intermediate.
RESUMO
Cyclocarya paliurus tea, also known as "sweet tea", an herbal tea with Cyclocarya paliurus leaves as raw material, is famous for its unique nutritional benefits and flavor. However, due to the unique "bittersweet" of Cyclocarya paliurus tea, it is still unable to fully satisfy consumers' high-quality taste experience and satisfaction. Therefore, this study aimed to explore metabolites in Cyclocarya paliurus leaves during their growth period, particularly composition and variation of sweet and bitter taste compounds, by combining multi-platform metabolomics analysis with an electronic tongue system and molecular docking simulation technology. The results indicated that there were significant differences in the contents of total phenols, flavonoids, polysaccharides, and saponins in C. paliurus leaves in different growing months. A total of 575 secondary metabolites were identified as potential active metabolites related to sweet/bitter taste using nontargeted metabolomics based on UHPLC-MS/MS analysis. Moreover, molecular docking technology was utilized to study interactions between the candidate metabolites and the sweet receptors T1R2/T1R3 and the bitter receptors T2R4/T2R14. Six key compounds with high sweetness and low bitterness were successfully identified by using computational simulation analysis, including cis-anethole, gluconic acid, beta-D-Sedoheptulose, asparagine, proline, and citrulline, which may serve as candidates for taste modification in Cyclocarya paliurus leaves. These findings provide a new perspective for understanding the sweet and bitter taste characteristics that contribute to the distinctive sensory quality of Cyclocarya paliurus leaves.
RESUMO
The journal retracts the article, "Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending" [...].
RESUMO
BACKGROUND: The use of phytosterols and phytostanols (PS) as food supplements to control plasma cholesterol concentrations has recently received attention as its efficacy has been endorsed by scientific authorities and leading guidelines. However, the effects of phytosterols on lipid profiles and atherosclerosis remain incomplete and controversial. This study aims to investigate the effects of PS supplementation on lipid profiles and apolipoproteins in adults based on a systematic review of the literature and a meta-analysis of randomized controlled trials (RCTs). METHODS: A comprehensive search was conducted for RCTs published in PubMed, Embase, Cochrane Library, and Web of Science as of May 2024. Random effects model was utilized to determine the mean differences and 95% confidence interval for changes in circulating lipid profiles and apolipoproteins. RESULTS: Twenty-eight RCTs with a total of 1777 participants (895 cases and 882 controls) are included in the qualitative synthesis. PS supplementation significantly reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and apolipoprotein B (Apo-B) levels, as well as Apo-B/apolipoprotein A1 ratios, but increased high-density lipoprotein cholesterol levels. PS supplementation dose is associated with TC, LDL-c, and Apo-B levels in a dose-response manner. CONCLUSION: Our findings suggest that dietary phytosterols can effectively promote the reduction of TC, LDL-c, and Apo-B, along with increased high-density lipoprotein cholesterol in adults.
Assuntos
Apolipoproteínas , Suplementos Nutricionais , Fitosteróis , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Fitosteróis/administração & dosagem , Fitosteróis/farmacologia , Apolipoproteínas/sangue , Lipídeos/sangue , Adulto , Colesterol/sangueRESUMO
Purpose: Continuous artificial aqueous humor drainage in the eyes of patients with glaucoma undergoing trabeculectomy likely exerts abnormal shear stress. However, it remains unknown how changes in intraocular pressure (IOP) can affect aqueous humor outflow (AHO). Methods: Here, we induced and maintained low intraocular pressure (L-IOP) in healthy Sprague Dawley (SD) rats by puncturing their eyes using a tube (200-µm diameter) for 2 weeks. After the rats were euthanized, their eyes were removed, fixed, embedded, stained, and scanned to analyze the physiological and pathological changes in the trabecular meshwork (TM) and Schlemm's canal (SC). We measured SC parameters using ImageJ software and assessed the expression of various markers related to flow shear stress (KLF4), fibrosis (TGF-ß1, TGF-ß2, α-SMA, pSmad1/5, pSmad2/3, and fibronectin), cytoskeleton (integrin ß1 and F-actin), diastolic function (nitric oxide synthase and endothelial nitric oxide synthase [eNOS]), apoptosis (cleaved caspase-3), and proliferation (Ki-67) using immunofluorescence or immunohistochemistry. Results: L-IOP eyes showed a larger SC area, higher eNOS expression, and lower KLF4 and F-actin expression in the TM and SC (both P < 0.05) than control eyes. The aqueous humor of L-IOP eyes had a higher abundance of fibrotic proteins and apoptotic cells than that of control eyes, with significantly higher TGF-ß1, α-SMA, fibronectin, and cleaved caspase-3 expression (all P < 0.05). Conclusions: In conclusion, a persistence of L-IOP for 2 weeks may contribute to fibrosis in the TM and SC and might be detrimental to conventional AHO in SD rat eyes. Translational Relevance: Clinicians should consider that aberrant shear force induced by aqueous humor fluctuation may damage AHO outflow channel when treating patients.
Assuntos
Humor Aquoso , Fibrose , Pressão Intraocular , Fator 4 Semelhante a Kruppel , Ratos Sprague-Dawley , Malha Trabecular , Animais , Malha Trabecular/patologia , Malha Trabecular/metabolismo , Fibrose/patologia , Ratos , Pressão Intraocular/fisiologia , Humor Aquoso/metabolismo , Masculino , Modelos Animais de Doenças , Apoptose , Canal de SchlemmRESUMO
Like many traditional Chinese herbal medicines, preparations from Radix Dipsaci are at risk of contamination by harmful mycotoxins; however, there have been no reports of actual contamination. In this study, we developed an analytical method to simultaneously detect eight mycotoxins in Radix Dipsaci and estimate the exposure risk for consumers. We have developed an analytical method utilizing ultra-high performance liquid chromatography and tandem mass spectrometry to accurately determine the levels of AFB1, AFB2, AFG1, AFG2, OTA, ZEN, T-2 and ST mycotoxins in 45 batches of Radix Dipsaci sourced from major medicinal herb markets across five regions in China. We also analyzed migration of mycotoxins from the raw herbs into water decoction. Based on these results and data on human consumption of the herbal medicine, we estimated risk of exposure and acceptable exposure limits to mycotoxins in the Radix Dipsaci using the "margin of exposure (MOE)" method. Of the 45 batches of Radix Dipsaci, 48.89% contained at least one of the eight mycotoxins, 24.44% contained one, 17.78% contained two and 6.67% contained three. The most frequent mycotoxins were aflatoxin B1, present in 35.56% of batches (at 0.25-34.84 µg/kg); aflatoxin G1, 15.56% (1.99-44.05 µg/kg); and ochratoxin A, 22.22% (16.11-143.38 µg/kg). These three mycotoxins transferred from the raw herb into water decoction at respective rates of 20.20%, 29.14%, and 24.80%. The 95th percentile values of the MOE risk factors for health effects of AFB1 were below 10,000 at high doses but above 10,000 at low doses of Radix Dipsaci long-term treatment. With the reduction in duration of exposure years, the MOE values of AFB1 and AFG1 gradually reverted to within the acceptable range. The mean, 50th, and 95th percentile values of the MOE risk factors for health effects of OTA exceeded 10,000 regardless of whether consumers received a low or high dose of Radix Dipsaci treatment for durations ranging from 1 to lifetime. Based on this exposure and a typical human diet, we have estimated the respective 20-year exposure limits for Radix Dipsaci to be 5.821 µg/kg, 4.035 µg/kg, and 56.073 µg/kg for the three mycotoxins under consideration. Contamination with multiple mycotoxins is frequently observed in Radix Dipsaci, and the three most prevalent contaminants have been found to leach into water decoctions, thereby posing a potential health hazard for individuals consuming this herbal preparation. This work highlights the need to monitor herbal medicines for mycotoxin contamination in order to protect consumers.
Assuntos
Medicamentos de Ervas Chinesas , Micotoxinas , Micotoxinas/análise , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , China , Contaminação de Medicamentos , Medição de RiscoRESUMO
The employment of ultra-low permittivity materials in the configuration of antennas has been demonstrated to augment the antenna bandwidth and diminish signal delay effectively. This study presents three ultra-low permittivity metaphosphate microwave dielectric ceramics (MWDCs). The ALaP4O12 (A = Li, Na, K) metaphosphate ceramics, which all belong to the monoclinic crystal system, exhibit extremely low permittivity (εr ≈ 5) and excellent quality factor (Q·f > 10,000 GHz) at a low sintering temperature (T < 950 °C). Terahertz time-domain spectroscopy indicates that the εr of ALaP4O12 at terahertz frequencies is comparable to that observed in the microwave band and its value remains stable over an extensive frequency range. Furthermore, the relationship between the crystal structure and the dielectric properties of ALaP4O12 has been analyzed through the lens of chemical bond theory. The highest Q·f value observed for LiLaP4O12 can be attributed to the high chemical bond strength and stability of its crystal structure. The lowest ionic polarizability per unit volume is exhibited by NaLaP4O12, which results in the lowest pore-corrected permittivity. The thermal expansion of the chemical bonds within KLaP4O12 is considerable, resulting in the highest coefficient of thermal expansion. Finally, the performance of a LiLaP4O12-based dielectric resonator antenna (DRA) excited by slot-coupled microstrip lines was designed and optimized by using different ceramic radius-to-height (RH) ratios. It was found that when the RH ratio of DRA reached 1.85, both the fundamental mode (HEM11δ) and the higher-order mode (HEM12δ) of DRA were simultaneously excited. The two modes overlap significantly, resulting in an ultra-wideband (UWB) of 46.8% (bandwidth = 7.93 GHz). Concurrently, the maximum radiation efficiency and gain of the DRA, obtained from the simulation, are 97.9% and 7.92 dBi, respectively. The findings of this study may inform the investigation of ultra-low permittivity phosphorus-based MWDCs and UWB DRAs.