Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.038
Filtrar
1.
Org Biomol Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984917

RESUMO

An unprecedented trifunctionalization of CC bonds in 2-(1-azidovinyl)-1,1'-biphenyls has been successfully achieved using the NCS/AgNO2 system, leading to the preparation of 6-(dichloro(nitro)methyl)phenanthridines in moderate to good yields. In this process, the NCS/AgNO2 system serves as a NO2 radical initiator as well as a chloro group source. The present protocol is a rare example of the selective construction of densely functionalized phenanthridine derivatives in a one-pot manner.

2.
Chemistry ; : e202401727, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979891

RESUMO

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438 ± 204%), tensile strength (23.5 ± 1.7 MPa), and outstanding elastic recovery (>88%).

3.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006851

RESUMO

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Assuntos
Eixo Encéfalo-Intestino , Modelos Animais de Doenças , Síndrome do Intestino Irritável , Proteína da Zônula de Oclusão-1 , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Proteína da Zônula de Oclusão-1/metabolismo , Camundongos , Fosforilação , Masculino , Eixo Encéfalo-Intestino/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/imunologia , Humanos , Camundongos Endogâmicos C57BL
4.
BMC Plant Biol ; 24(1): 665, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997669

RESUMO

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.


Assuntos
Arabidopsis , Marcação de Genes , Arabidopsis/genética , Marcação de Genes/métodos , Transformação Genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Plantas Geneticamente Modificadas/genética
5.
Plant Commun ; : 101040, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39001607

RESUMO

Understanding the behavior of endogenous proteins is crucial for functional genomics, yet their dynamic characterization in plants presents substantial challenges. While mammalian studies have leveraged in-locus tagging with the luminescent HiBiT peptide and genome editing for rapid quantification of native proteins, this approach remained unexplored in plants. Here, we introduce the in-locus HiBiT tagging of rice proteins and demonstrate its feasibility in plants. We found that although traditional HiBiT blotting works in rice, it failed to detect two of the three tagged proteins, which is attributed to the low luminescence activity in plants. To overcome this limitation, we engaged in extensive optimization, culminating in a new luciferin substrate coupled with a refined reaction protocol that enhanced luminescence by up to 6.9-fold. This innovation led to the development of TagBIT (tagging with HiBiT), a robust method for high-sensitivity protein characterization in plants. Our application of TagBIT to seven rice genes illustrates its versatility on endogenous proteins, enabling antibody-free protein blotting, real-time protein quantification via luminescence, in-situ visualization using a cross-breeding strategy, and effective immunoprecipitation for protein interaction analysis. The heritable nature of this system, confirmed across T1 to T3 generations, positions TagBIT as a powerful tool for protein study in plant biology.

6.
Front Psychol ; 15: 1385178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984272

RESUMO

Introduction: This meta-analysis investigates the relationship between coach leadership behaviors and athlete satisfaction and group cohesion within the realm of Chinese sports. The study also explores player sex and player classification as potential moderating variables. The primary focus is on evaluating the impact of coaching behaviors, as measured by the Leadership Scale for Sports, on athlete satisfaction and group cohesion. Methods: Standard literature searches from China National Knowledge Infrastructure and Wanfang academic databases produced 26 studies encompassing a total of 319 effect sizes and a participant pool of 7,121 athletes across various sports. Results: Using the Comprehensive Meta-Analysis (CMA) to examine relevant data, results reveal a moderate and positive association between coach leadership and athlete satisfaction (ES = 0.412). Specifically, training and instruction (ES = 0.531), positive feedback (ES = 0.526), social support, and democratic decision-making exhibit positive effects, while autocratic behavior demonstrates a marginal positive effect. Similarly, a moderate positive relationship is identified between coach leadership and overall group cohesion (ES = 0.275), with training and instruction (ES = 0.396), social support (ES = 0.356), positive feedback, and democratic behavior positively influencing cohesion. Conversely, autocratic behavior has a small negative impact on cohesion. Furthermore, female athletes (ES = 0.603) and professional players (ES = 0.544) display stronger positive associations between coach leadership and satisfaction. Conclusion: These findings highlight the significance of diverse coaching behaviors aligned with player characteristics for fostering positive athlete satisfaction and group cohesion within the Chinese sports context, offering valuable guidance to Chinese coaches aiming to enhance their coaching strategies.

7.
Int Immunopharmacol ; 139: 112715, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032471

RESUMO

Citalopram and escitalopram are structurally close-related antidepressants and both forms are widely used in the world. We aimed to comparatively evaluate the anti-neuroinflammatory and neuroprotective effects of escitalopram and citalopram in Parkinson's disease (PD) mouse model. Mice were randomly divided into six groups and received 6-hydroxydopamine (6-OHDA) or vehicle administration. The mice were then treated with escitalopram, citalopram or saline for consecutive 7 days. Behaviors, neuroinflammation, neurotransmitters, and neurotoxicity were assessed. Results showed that citalopram but not escitalopram worsened body weight loss and increased freezing time in the PD mice. Both drugs had no impact on the anxiety-like behaviors but ameliorated the depressive-like behaviors as in elevated plus maze and sucrose splash tests. Escitalopram but not citalopram ameliorated motor discoordination in the PD mice as in rotarod test. In accordance, escitalopram but not citalopram attenuated the 6-OHDA-induced nigrostriatal dopaminergic loss. Further mechanistic investigations showed that both drugs mitigated activations of microglia and astrocytes and/or levels of pro-inflammatory cytokines in the PD mice, but escitalopram showed appreciably better effects in the substantia nigra. Neurotransmitter examination in the prefrontal cortex suggested that the two drugs had comparable effects on the disturbed neurotransmitters in the PD mice, but citalopram was prone to disrupt certain normal homeostasis. In conclusion, escitalopram is moderately superior than citalopram to suppress neuroinflammation and to protect against dopaminergic neuronal death and motor discoordination in the 6-OHDA-induced PD mice. Our findings imply that escitalopram shall be prescribed with priority over citalopram to treat PD patients with depression as escitalopram may meanwhile provide greater additional benefits to the patients.

8.
Nat Cell Biol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039181

RESUMO

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin ß7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.

9.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954637

RESUMO

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma de Células Renais , Proliferação de Células , Neoplasias Renais , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Camundongos Nus , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Serina-Treonina Quinase 3
10.
Int J Hyperthermia ; 41(1): 2328113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38964750

RESUMO

PURPOSE: This study aimed to investigate the efficacy and safety of ultrasound-guided percutaneous radiofrequency ablation (RFA) for the treatment of synovial hyperplasia in the knee joints of antigen-induced arthritis (AIA) model rabbits. METHODS: Forty Japanese large-eared white rabbits were divided into AIA and control groups. After successful induction of the AIA model, the knee joints were randomly assigned to RFA and non-RFA groups. The RFA group underwent ultrasound-guided RFA to treat synovial hyperplasia in the knee joint. Dynamic observation of various detection indices was conducted to evaluate the safety and effectiveness of the RFA procedure. RESULTS: Successful synovial ablation was achieved in the RFA group, with no intraoperative or perioperative mortality. Postoperative the circumference of the knee joint reached a peak before decreasing in the third week after surgery. The incidence and diameter of postoperative skin ulcers were not significantly different compared to the non-RFA group (p > .05). Anatomical examination revealed an intact intermuscular fascia around the ablated area in the RFA group. The ablated synovial tissue initially presented as a white mass, which subsequently liquefied into a milky white viscous fluid. Gross articular cartilage was observed, along with liquefied necrosis of the synovium on pathological histology and infiltration of inflammatory cells in the surrounding soft tissue. CONCLUSION: The experimental results demonstrated that ultrasound-guided RFA of the knee in the treatment of synovial hyperplasia in AIA model animals was both effective and safe.


Assuntos
Hiperplasia , Ablação por Radiofrequência , Animais , Coelhos , Ablação por Radiofrequência/métodos , Hiperplasia/cirurgia , Hiperplasia/patologia , Membrana Sinovial/patologia , Membrana Sinovial/diagnóstico por imagem , Ultrassonografia/métodos , Masculino , Ultrassonografia de Intervenção/métodos
11.
IEEE Trans Med Imaging ; PP2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949934

RESUMO

Deep learning approaches for multi-label Chest X-ray (CXR) images classification usually require large-scale datasets. However, acquiring such datasets with full annotations is costly, time-consuming, and prone to noisy labels. Therefore, we introduce a weakly supervised learning problem called Single Positive Multi-label Learning (SPML) into CXR images classification (abbreviated as SPML-CXR), in which only one positive label is annotated per image. A simple solution to SPML-CXR problem is to assume that all the unannotated pathological labels are negative, however, it might introduce false negative labels and decrease the model performance. To this end, we present a Multi-level Pseudo-label Consistency (MPC) framework for SPML-CXR. First, inspired by the pseudo-labeling and consistency regularization in semi-supervised learning, we construct a weak-to-strong consistency framework, where the model prediction on weakly-augmented image is treated as the pseudo label for supervising the model prediction on a strongly-augmented version of the same image, and define an Image-level Perturbation-based Consistency (IPC) regularization to recover the potential mislabeled positive labels. Besides, we incorporate Random Elastic Deformation (RED) as an additional strong augmentation to enhance the perturbation. Second, aiming to expand the perturbation space, we design a perturbation stream to the consistency framework at the feature-level and introduce a Feature-level Perturbation-based Consistency (FPC) regularization as a supplement. Third, we design a Transformer-based encoder module to explore the sample relationship within each mini-batch by a Batch-level Transformer-based Correlation (BTC) regularization. Extensive experiments on the CheXpert and MIMIC-CXR datasets have shown the effectiveness of our MPC framework for solving the SPML-CXR problem.

12.
Chem Asian J ; : e202400648, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946109

RESUMO

Photoinduced 3D printing via photocontrolled reversible-deactivation radical polymerization (photoRDRP) techniques has emerged as a robust technique for creating polymeric materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited. In this study, we present a facile approach for adjusting the mechanical properties of 3D-printed objects by adjusting the polymer dispersity within a Norrish type I photoinitiated reversible addition-fragmentation chain transfer (NTI-RAFT) polymerization-based 3D printing process. We investigated the effects of varying the concentrations and molar ratios of trithiocarbonate (BTPA) and xanthate (EXEP) on the mechanical properties of the printed materials. Our findings demonstrate that increased concentrations of RAFT agents or higher proportions of the more active BTPA lead to a decrease in Young's modulus and glass transition temperatures, along with an increase in elongation at break, which can be attributed to the enhanced homogeneity of the polymer network. Using a commercial LCD printer, the NTI-RAFT-based 3D printing system effectively produced materials with tailored mechanical properties, highlighting its potential for practical applications.

13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 324-328, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38953255

RESUMO

Objective To assess the influences of self-and interviewer-administered methods on the scores of anxiety and depression questionnaires among the patients with sports injuries.Methods A total of 532 participants with sports injuries treated in the Sports Medicine Center of West China Hospital,Sichuan University from November 2022 to May 2023 were included.They were randomly assigned to either the interviewer-administered group (n=270) or the self-administered group (n=262) to complete the generalized anxiety disorder (GAD-7) and the patient health questionnaire (PHQ-9) scales.The total scores and prevalence rates of anxiety and depression were compared between the two groups.Results There was no statistically significant difference in gender,occupation,or surgical site between the two groups (all P>0.05).The self-administered group had higher scores of GAD-7 and PHQ-9 scales than the interviewer-administered group (P<0.001,P<0.001).A greater proportion of participants in the self-administered group than in the interview-administered group met the criteria for mild to moderate anxiety and depression (P<0.001,P=0.002).The prevalence rates of moderate to severe anxiety (GAD-7≥10) and depression (PHQ-9≥10) showed no statistically significant difference between the two groups (P=0.761,P=0.086).Conclusion This study demonstrates that the participants in the self-administered group are more likely to report mild to moderate symptoms of anxiety and depression than those in the interviewer-administered group.


Assuntos
Ansiedade , Depressão , Humanos , Inquéritos e Questionários , Depressão/epidemiologia , Depressão/diagnóstico , Feminino , Ansiedade/epidemiologia , Masculino , Adulto , Traumatismos em Atletas/psicologia , Traumatismos em Atletas/epidemiologia , China/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem
14.
J Integr Plant Biol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031490

RESUMO

Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.

15.
Cancer Lett ; 598: 217104, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969163

RESUMO

Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).

16.
Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

17.
Environ Res ; 260: 119621, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019142

RESUMO

Atom-dispersed low-coordinated transition metal-Nx catalysts exhibit excellent efficiency in activating peroxydisulfate (PDS) for environmental remediation. However, their catalytic performance is limited due to metal-N coordination number and single-atom loading amount. In this study, low-coordinated nitrogen-doped graphene oxide (GO) confined single-atom Mn catalyst (Mn-SA/NGO) was synthesized by molten salt-assisted pyrolysis and coupled to PDS for degradation of tetracycline (TC) in water. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analysis showed the successful doping of single-atom Mn (weight percentage 1.6%) onto GO and the formation of low-coordinated Mn-N2 sites. The optimized parameters obtained by Box-Behnken Design achieved 100% TC removal in both prediction and experimental results. The Mn-SA/NGO + PDS system had strong anti-interference ability for TC removal in the presence of anions. Besides, Mn-SA/NGO possessed good reusability and stability. O2•-, •OH, and 1O2 were the main active species for TC degradation, and the TC mineralization reached 85.1%. Density functional theory (DFT) calculations confirmed that the introduction of single atoms Mn could effectively enhance adsorption and activation of PDS. The findings provide a reference for the synthesis of high-performance single-atom catalysts for effective removal of antibiotics.

18.
Infect Med (Beijing) ; 3(2): 100107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872909

RESUMO

Tuberculosis is a chronic infectious disease, caused by Mycobacterium tuberculosis, that seriously endangers human health. Skeletal tuberculosis is the most common type of extrapulmonary tuberculosis and tuberculous arthritis is the second most common type of skeletal tuberculosis. We report a case series of patients with tuberculous arthritis, two of whom had no joint disease in the past and presented as monoarthritis. The final patient had a history of rheumatoid arthritis, with polyarthritis that was aggravated during treatment with glucocorticoids and immunosuppressive drugs. This series of cases can contribute to early diagnosis and treatment with appropriate infection control measures.

19.
Medicine (Baltimore) ; 103(24): e38524, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875405

RESUMO

BACKGROUND: This study aimed to investigate the effect of complex training on the strength, power, and change of direction (COD) performance of college female basketball athletes. METHODS: This design used experimental and randomized studies. A total of 32 female basketball players volunteered to participate in this study and were randomly allocated to a complex training group (CT group: n = 16) and a resistance training group (RT group: n = 16). The CT group performed CT and the RT group completed RT for 8 weeks. The CT and RT programs were developed based on the linear periodization theory, which required participants to train 2 times a week in the first 4 weeks and 3 times a week in the following 4 weeks. All participants were tested using the 5-0-5 COD test, Illinois agility test (IAT), one-repetition maximum back squat (1RM BS) test, and countermovement jump (CMJ) test before and after the 8-week training period. RESULTS: Two-way repeated measure ANOVA showed a significant group × time interaction for the 5-0-5 COD, IAT, 1RM BS, and CMJ results after the intervention compared with that before the intervention (P < .05) in the CT group (effect size = 0.86-4.04). CT compared with RT caused remarkably larger enhancements in the IAT (P < .001) and CMJ (P = .040) scores. CONCLUSION: Our findings indicate that the implementation of CT could be a promising and innovative intervention for enhancing the strength, power, and COD performance of female basketball players.


Assuntos
Desempenho Atlético , Basquetebol , Força Muscular , Treinamento Resistido , Humanos , Basquetebol/fisiologia , Feminino , Força Muscular/fisiologia , Desempenho Atlético/fisiologia , Treinamento Resistido/métodos , Adulto Jovem , Atletas , Teste de Esforço/métodos
20.
Acta Pharmacol Sin ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858494

RESUMO

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...