Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 45: 226-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38596341

RESUMO

Objectives: To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods: RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results: The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions: These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article: It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.

2.
BMC Genomics ; 24(1): 478, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612625

RESUMO

BACKGROUND: Heat shock protein 20 (HSP20) is a member of the heat stress-related protein family, which plays critical roles in plant growth, development, and response to abiotic stresses. Although many HSP20 genes have been associated with heat stress in numerous types of plants, little is known about the details of the HSP20 gene family in Coix. To investigate the mechanisms of the ClHSP20 response to heat and drought stresses, the ClHSP20 gene family in Coix was identified and characterized based on genome-wide analysis. RESULTS: A total of 32 putative ClHSP20 genes were identified and characterized in Coix. Phylogenetic analysis indicated that ClHSP20s were grouped into 11 subfamilies. The duplicated event analysis demonstrated that tandem duplication and segment duplication events played crucial roles in promoting the expansion of the ClHSP20 gene family. Synteny analysis showed that Coix shared the highest homology in 36 HSP20 gene pairs with wheat, followed by 22, 19, 15, and 15 homologous gene pairs with maize, sorghum, barley, and rice, respectively. The expression profile analysis showed that almost all ClHSP20 genes had different expression levels in at least one tissue. Furthermore, 22 of the 32 ClHSP20 genes responded to heat stress, with 11 ClHSP20 genes being significantly upregulated and 11 ClHSP20 genes being significantly downregulated. Furthermore, 13 of the 32 ClHSP20 genes responded to drought stress, with 6 ClHSP20 genes being significantly upregulated and 5 ClHSP20 genes being significantly downregulated. CONCLUSIONS: Thirty-two ClHSP20 genes were identified and characterized in the genome of Coix. Tandem and segmental duplication were identified as having caused the expansion of the ClHSP20 gene family. The expression patterns of the ClHSP20 genes suggested that they play a critical role in growth, development, and response to heat and drought stress. The current study provides a theoretical basis for further research on ClHSP20s and will facilitate the functional characterization of ClHSP20 genes.


Assuntos
Coix , Proteínas de Choque Térmico , Animais , Secas , Filogenia , Estro
3.
Materials (Basel) ; 16(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444990

RESUMO

Dual-initiation is a new orientation of many studies in the curing of unsaturated polyester resin and the manufacture of low-density unsaturated polyester resin (LDUPR) composite materials. In our research, two kinds of low-temperature (40-70 °C) initiators (cyclohexanone peroxide (CYHP) and methyl ethyl ketone peroxide (MEKP)), one kind of medium-temperature (70-130 °C) initiator (tert-butyl peroxy-2-ethylhexanoate (TBPO)), and three kinds of high-temperature (≥130 °C) initiators (tert-butyl benzoate peroxide (TBPB), tert-amyl carbonate peroxide-2-ethylhexanoate (TAEC), and tert-butyl carbonate peroxide-2-ethylhexanoate (TBEC)) were applied to constitute different dual-initiators. Those dual-initiators were a low-temperature dual-initiator (CYHP/MEKP), medium-low-temperature dual-initiators (CYHP/TBPO and MEKP/TBPO), and high-temperature dual-initiators (TAEC/TBPB, TAEC/TBEC, and TBEC/TBPB). In the low-temperature and medium-low-temperature ranges, the LDUPR sample displayed the highest specific compression strength (Ps) of 42.08 ± 0.26 MPa·g-1·cm3 in the presence of the MEKP/TBPO dual-initiator. In the high-temperature range, the LDUPR sample exhibited the highest specific compression strength (Ps) of 43.32 ± 0.45 MPa·g-1·cm3 for the existence of the TAEC/TBPB dual-initiator. It is pointed out that the dual-initiator released more active free radicals, accelerating the initial curing time and the peak time of UPR. More active free radicals caused both high-activity (short-chain) molecules and low-activity (long-chain or intertwined) molecules in resin to cross-link, prolonging UPR's curing process by approximately two minutes and resulting in an improvement of UPR's cross-linking. In the presence of a dual-initiator, the integrated and planar microstructure of LDUPR samples performed uniformly distributed dimples, dispersed external forces, and enhanced samples' specific compressive strength.

4.
Cell Death Dis ; 13(6): 567, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739102

RESUMO

Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.


Assuntos
Proteína C-Reativa , MicroRNAs , Osteoartrite , Componente Amiloide P Sérico , Sinovite , Animais , Condrócitos/metabolismo , Humanos , Macrófagos , Camundongos , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Sinovite/genética , Sinovite/metabolismo
5.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885469

RESUMO

Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also to the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...