Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pain ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39432803

RESUMO

ABSTRACT: Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. The present study shows that long-lasting hyperexcitability that can generate OA during modest depolarization in probable nociceptors dissociated from DRGs of male and female rats is induced by plantar incision injury. OA occurred when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This hyperexcitability persisted for at least 3 weeks, whereas behavioral indicators of affective pain-hind paw guarding and increased avoidance of a noxious substrate in an operant conflict test-persisted for 1 week or less. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. An unexpected discovery after plantar incisions was hyperexcitability in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to contribute to hyperalgesic priming and to drive anxiety-related hypervigilance.

2.
J Clin Invest ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316444

RESUMO

Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging due to the fragile nature of fear extinction, for which ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low gamma-band oscillations that facilitate fear extinction. Finally, application of low gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.

3.
Sci Adv ; 10(33): eadn6272, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150998

RESUMO

Chronic itch often clinically coexists with anxiety symptoms, creating a vicious cycle of itch-anxiety comorbidities that are difficult to treat. However, the neuronal circuit mechanisms underlying the comorbidity of anxiety in chronic itch remain elusive. Here, we report anxiety-like behaviors in mouse models of chronic itch and identify γ-aminobutyric acid-releasing (GABAergic) neurons in the lateral septum (LS) as the key player in chronic itch-induced anxiety. In addition, chronic itch is accompanied with enhanced activity and synaptic plasticity of excitatory projections from the thalamic nucleus reuniens (Re) onto LS GABAergic neurons. Selective chemogenetic inhibition of the Re → LS circuit notably alleviated chronic itch-induced anxiety, with no impact on anxiety induced by restraint stress. Last, GABAergic neurons in lateral hypothalamus (LH) receive monosynaptic inhibition from LS GABAergic neurons to mediate chronic itch-induced anxiety. These findings underscore the potential significance of the Re → LS → LH pathway in regulating anxiety-like comorbid symptoms associated with chronic itch.


Assuntos
Ansiedade , Neurônios GABAérgicos , Região Hipotalâmica Lateral , Prurido , Animais , Camundongos , Neurônios GABAérgicos/metabolismo , Doença Crônica , Modelos Animais de Doenças , Núcleos da Linha Média do Tálamo/metabolismo , Masculino , Comportamento Animal , Vias Neurais , Plasticidade Neuronal , Núcleos Septais
4.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902277

RESUMO

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Knockout , Psoríase , Células Receptoras Sensoriais , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Psoríase/metabolismo , Psoríase/patologia , Psoríase/genética , Psoríase/induzido quimicamente , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Pele/patologia , Imiquimode , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação Neurogênica/metabolismo , Humanos , Nociceptores/metabolismo , Interleucina-23/metabolismo , Interleucina-23/genética
5.
Neuron ; 112(11): 1815-1831.e4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492574

RESUMO

Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1+/+, Trpv1-/-, and Trpv1T634A/T634A. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT. We identified the S4-S5 linker region exposed to the vanilloid pocket of TRPV1 to be critical for hyperthermia associated with certain TRPV1 antagonists. PSFL2874, a TRPV1 antagonist we discovered, is effective against inflammatory pain but devoid of binding to the S4-S5 linker and inducing CBT changes. These findings implicate that biased allosteric mechanisms exist for TRPV1 coupling to nociception and CBT regulation, opening avenues for the development of non-opioid analgesics without affecting CBT.


Assuntos
Temperatura Corporal , Nociceptividade , Canais de Cátion TRPV , Animais , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Analgésicos/farmacologia , Temperatura Corporal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Dor/metabolismo , Dor/tratamento farmacológico , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
6.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352319

RESUMO

Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.

7.
Comput Struct Biotechnol J ; 23: 295-308, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38173879

RESUMO

P2X receptors (P2X1-7) are non-selective cation channels involved in many physiological activities such as synaptic transmission, immunological modulation, and cardiovascular function. These receptors share a conserved mechanism to sense extracellular ATP. TNP-ATP is an ATP derivative acting as a nonselective competitive P2X antagonist. Understanding how it occupies the orthosteric site in the absence of agonism may help reveal the key allostery during P2X gating. However, TNP-ATP/P2X complexes (TNP-ATP/human P2X3 (hP2X3) and TNP-ATP/chicken P2X7 (ckP2X7)) with distinct conformations and different mechanisms of action have been proposed. Whether these represent species and subtype variations or experimental differences remains unclear. Here, we show that a common mechanism of TNP-ATP recognition exists for the P2X family members by combining enhanced conformation sampling, engineered disulfide bond analysis, and covalent occupancy. In this model, the polar triphosphate moiety of TNP-ATP interacts with the orthosteric site, while its TNP-moiety is deeply embedded in the head and dorsal fin (DF) interface, creating a restrictive allostery in these two domains that results in a partly enlarged yet ion-impermeable pore. Similar results were obtained from multiple P2X subtypes of different species, including ckP2X7, hP2X3, rat P2X2 (rP2X2), and human P2X1 (hP2X1). Thus, TNP-ATP uses a common mechanism for P2X recognition and modulation by restricting the movements of the head and DF domains which are essential for P2X activation. This knowledge is applicable to the development of new P2X inhibitors.

8.
Pain ; 165(4): 893-907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862056

RESUMO

ABSTRACT: Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.


Assuntos
Nociceptores , Canais de Cátion TRPM , Ratos , Camundongos , Animais , Humanos , Ratos Sprague-Dawley , Corpo Celular , Dor/metabolismo , Potenciais de Ação/fisiologia , Canais Iônicos/metabolismo , Gânglios Espinais/metabolismo , Canais de Cátion TRPM/metabolismo
9.
Br J Pharmacol ; 181(8): 1203-1220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37921202

RESUMO

BACKGROUND AND PURPOSE: The P2X3 receptor, a trimeric ionotropic purinergic receptor, has emerged as a potential therapeutic target for refractory chronic cough (RCC). Nevertheless, gefapixant/AF-219, the only marketed P2X3 receptor antagonist, might lead taste disorders by modulating the human P2X2/3 (hP2X2/3) heterotrimer. Hence, in RCC drug development, compounds exhibiting strong affinity for the hP2X3 homotrimer and a weak affinity for the hP2X2/3 heterotrimer hold promise. An example of such a molecule is sivopixant/S-600918, a clinical Phase II RCC candidate with a reduced incidence of taste disturbance compared to gefapixant. Sivopixant and its analogue, (3-(4-([3-chloro-4-isopropoxyphenyl]amino)-3-(4-methylbenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl)propanoic acid (DDTPA), exhibit both high affinity and high selectivity for hP2X3 homotrimers, compared with hP2X2/3 heterotrimers. The mechanism underlying the druggable site and its high selectivity remains unclear. EXPERIMENTAL APPROACH: To analyse mechanisms that distinguish this drug candidate from other inhibitors of the P2X3 receptors we used a combination of chimera construction, site covalent occupation, metadynamics, mutagenesis and whole-cell recording. KEY RESULTS: The high affinity and selectivity of sivopixant/DDTPA for hP2X3 receptors was determined by the tri-symmetric site located close to the upper vestibule. Substitution of only four amino acids inside the upper body domain of hP2X2 with those of hP2X3, enabled the hP2X2/3 heterotrimer to exhibit a similar level of apparent affinity for sivopixant/DDTPA as the hP2X3 homotrimer. CONCLUSION AND IMPLICATIONS: From the receptor-ligand recognition perspective, we have elucidated the molecular basis of novel RCC clinical candidates' cough-suppressing properties and reduced side effects, offering a promising approach to the discovery of novel drugs that specifically target P2X3 receptors.


Assuntos
Compostos de Anilina , Benzenossulfonamidas , Carcinoma de Células Renais , Neoplasias Renais , Pirimidinas , Triazinas , Humanos , Carcinoma de Células Renais/induzido quimicamente , Piridinas/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Tosse/induzido quimicamente , Receptores Purinérgicos P2X3 , Sulfonamidas , Neoplasias Renais/induzido quimicamente , Receptores Purinérgicos P2X2
10.
Cell Rep ; 42(11): 113401, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943660

RESUMO

TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.


Assuntos
Dor Crônica , Sumoilação , Animais , Camundongos , Dor Crônica/metabolismo , Adjuvante de Freund , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
11.
Nat Commun ; 14(1): 5844, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730705

RESUMO

P2X receptors are cation channels that sense extracellular ATP. Many therapeutic candidates targeting P2X receptors have begun clinical trials or acquired approval for the treatment of refractory chronic cough (RCC) and other disorders. However, the present negative allosteric modulation of P2X receptors is primarily limited to the central pocket or the site below the left flipper domain. Here, we uncover a mechanism of allosteric regulation of P2X3 in the inner pocket of the head domain (IP-HD), and show that the antitussive effects of quercetin and PSFL2915 (our nM-affinity P2X3 inhibitor optimized based on quercetin) on male mice and guinea pigs were achieved by preventing allosteric changes of IP-HD in P2X3. While being therapeutically comparable to the newly licensed P2X3 RCC drug gefapixant, quercetin and PSFL2915 do not have an adverse effect on taste as gefapixant does. Thus, allosteric modulation of P2X3 via IP-HD may be a druggable strategy to alleviate RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Animais , Cobaias , Camundongos , Tosse/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Paladar
12.
Nat Commun ; 14(1): 5688, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709794

RESUMO

Small ubiquitin-like modifier (SUMO) typically conjugates to target proteins through isopeptide linkage to the ε-amino group of lysine residues. This posttranslational modification (PTM) plays pivotal roles in modulating protein function. Cofilins are key regulators of actin cytoskeleton dynamics and are well-known to undergo several different PTMs. Here, we show that cofilin-1 is conjugated by SUMO1 both in vitro and in vivo. Using mass spectrometry and biochemical and genetic approaches, we identify the N-terminal α-amino group as the SUMO-conjugation site of cofilin-1. Common to conventional SUMOylation is that the N-α-SUMOylation of cofilin-1 is also mediated by SUMO activating (E1), conjugating (E2), and ligating (E3) enzymes and reversed by the SUMO deconjugating enzyme, SENP1. Specific to the N-α-SUMOylation is the physical association of the E1 enzyme to the substrate, cofilin-1. Using F-actin co-sedimentation and actin depolymerization assays in vitro and fluorescence staining of actin filaments in cells, we show that the N-α-SUMOylation promotes cofilin-1 binding to F-actin and cofilin-induced actin depolymerization. This covalent conjugation by SUMO at the N-α amino group of cofilin-1, rather than at an internal lysine(s), serves as an essential PTM to tune cofilin-1 function during regulation of actin dynamics.


Assuntos
Actinas , Sumoilação , Lisina , Fatores de Despolimerização de Actina , Ubiquitina
13.
Front Mol Neurosci ; 16: 1205516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435575

RESUMO

Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic ß-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.

14.
Cell Calcium ; 113: 102767, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321139

RESUMO

Transient receptor potential canonical 4 and 5 (TRPC4 and TRPC5) are Ca2+-permeable nonselective cation channels known to be activated by Gi/o proteins. Recently, Won et al. (Nat Commun. 2023, 14:2550) reported the cryo-EM structures of TRPC5 in complex with Gαi3. The G protein alpha subunit was found to directly bind to an ankyrin-like repeat domain in the periphery of the cytosolic portion of TRPC5 some 50 Å away from the membrane. This establishes the TRPC4/C5 ion channels as true effectors of Gα subunits, although the channel gating still depends on the coexistence of Ca2+ and phosphatidylinositol 4,5-bisphosphate.


Assuntos
Canais de Cátion TRPC , Microscopia Crioeletrônica , Canais de Cátion TRPC/metabolismo , Guanosina Trifosfato
15.
Acta Pharm Sin B ; 13(2): 445-459, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873177

RESUMO

Liver diseases constitute a major healthcare burden globally, including acute hepatic injury resulted from acetaminophen overdose, ischemia-reperfusion or hepatotropic viral infection and chronic hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Attainable treatment strategies for most liver diseases remain inadequate, highlighting the importance of substantial pathogenesis. The transient receptor potential (TRP) channels represent a versatile signalling mechanism regulating fundamental physiological processes in the liver. It is not surprising that liver diseases become a newly explored field to enrich our knowledge of TRP channels. Here, we discuss recent findings revealing TRP functions across the fundamental pathological course from early hepatocellular injury caused by various insults, to inflammation, subsequent fibrosis and hepatoma. We also explore expression levels of TRPs in liver tissues of ALD, NAFLD and HCC patients from Gene Expression Omnibus (GEO) or The Cancer Genome Atlas (TCGA) database and survival analysis estimated by Kaplan-Meier Plotter. At last, we address the therapeutical potential and challenges by pharmacologically targeting TRPs to treat liver diseases. The aim is to provide a better understanding of the implications of TRP channels in liver diseases, contributing to the discovery of novel therapeutic targets and efficient drugs.

16.
Phytomedicine ; 112: 154713, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857970

RESUMO

BACKGROUND: Flowers of Abelmoschus manihot (L.) medic (AM) is a traditional Chinese medicine used to treat chronic nephritis, nephrotic syndrome, diabetic nephropathy, and colonic inflammation. PURPOSE: This study aimed to explore the influence of the total flavone of AM flowers (TFA) on acute ulcerative colitis (UC) and the potential underlying mechanism. METHODS: Efficacy of TFA (30, 60, 120 mg/kg) on UC was evaluated in a dextran sodium sulphate (DSS)-induced colonic inflammatory mouse model by analyzing disease activity index (DAI), histopathological score, colon length, and cytokine expression. Expression levels of critical adhesion molecules and nuclear factor kappa B (NF-κB) were examined by qRT-PCR, Western blotting, or immunofluorescence labeling. Myeloperoxidase activity was examined using ELISA. In vitro THP-1 adhesion assay was used to evaluate monocyte adhesion. RESULTS: TFA significantly reduced DAI score, prevented colon shortening, and ameliorated histological injuries of colons in DSS-treated mice. TFA inhibited the expression of cytokines (IL-1ß and TNF-α) and adhesion molecules (ICAM-1, VCAM-1, and MAdCAM-1) in colon tissues of DSS mice. In vitro studies on mesenteric arterial endothelial cells (MAECs) showed that TFA attenuated TNF-α-induced upregulation of ICAM-1, VCAM-1, and MAdCAM-1, as well as THP-1 cell adhesion to MAECs. TFA also suppressed the phosphorylation and nuclear translocation of NF-κB in MAECs. CONCLUSION: TFA efficaciously ameliorates UC possibly by inhibiting monocyte adhesion through blocking TNF-α-induced NF-κB activation, which in turn suppresses the upregulation of adhesive molecules in colon endothelial cells. Inhibiting the expression of adhesion molecule in MAECs may represent a useful strategy for therapeutic development to treat UC, with TFA being a safe and efficacious therapeutic agent.


Assuntos
Abelmoschus , Colite Ulcerativa , Flavonas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão de Célula Vascular , Dextranos , Células Endoteliais , NF-kappa B , Fator de Necrose Tumoral alfa , Flores
17.
iScience ; 26(4): 106322, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968092

RESUMO

Homeostatic synaptic scaling entails adjustment of synaptic strength on a cell to prolonged changes of neuronal activity, which is postulated to participate in neuropsychiatric disorders in vivo. Here, we find that sustained elevation in ambient GABA levels, by either genetic deletion or pharmacological blockade of GABA transporter-1 (GAT1), leads to synaptic scaling up of corticostriatal pathways, which underlies locomotor hyperactivity. Meanwhile, medium spiny neurons of the dorsal striatum exhibit an aberrant increase in excitatory synaptic transmission and corresponding structural changes in dendritic spines. Mechanistically, GAT1 deficiency dampens the expression and function of metabotropic glutamate receptors (mGluRs) and endocannabinoid (eCB)-dependent long-term depression of excitatory transmission. Conversely, restoring mGluR function in GAT1 deficient mice rescues excitatory transmission. Lastly, pharmacological potentiation of mGluR-eCB signaling or inhibition of homomeric-GluA1 AMPA receptors eliminates locomotor hyperactivity in the GAT1 deficient mice. Together, these results reveal a synaptic scaling mechanism in corticostriatal pathways that regulate locomotor activity.

18.
Handb Exp Pharmacol ; 278: 35-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35902437

RESUMO

Two-pore channels, TPC1 and TPC2, are Ca2+- and Na+-permeable cation channels expressed on the membranes of endosomes and lysosomes in nearly all mammalian cells. These channels have been implicated in Ca2+ signaling initiated from the endolysosomes, vesicular trafficking, cellular metabolism, macropinocytosis, and viral infection. Although TPCs have been shown to mediate Ca2+ release from acidic organelles in response to NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca2+ mobilizing messenger, questions remain whether NAADP is a direct ligand of these channels. In whole-endolysosomal patch clamp recordings, it has been difficult to detect NAADP-evoked currents in vacuoles that expressed TPC1 or TPC2, while PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) activated a highly Na+-selective current under the same experimental configuration. In this chapter, we summarize recent progress in this area and provide our observations on NAADP-elicited TPC2 currents from enlarged endolysosomes as well as their possible relationships with the currents evoked by PI(3,5)P2. We propose that TPCs are channels dually regulated by PI(3,5)P2 and NAADP in an interdependent manner and the two endogenous ligands may have both distinguished and cooperative roles.


Assuntos
Canais de Cálcio , Transdução de Sinais , Animais , Humanos , Canais de Cálcio/metabolismo , NADP/metabolismo , Lisossomos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
19.
Sci Bull (Beijing) ; 67(10): 1062-1076, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546250

RESUMO

Transient receptor potential vanilloid1 (TRPV1) channel plays an important role in a wide range of physiological and pathological processes, and a comprehensive understanding of TRPV1 gating will create opportunities for therapeutic intervention. Recent incredible advances in cryo-electron microscopy (cryo-EM) have yielded high-resolution structures of all TRPV subtypes (TRPV1-6) and all of them share highly conserved six transmembrane (TM) domains (S1-S6). As revealed by the open structures of TRPV1 in the presence of a bound vanilloid agonist (capsaicin or resiniferatoxin), TM helicesS1 to S4 form a bundle that remains quiescent during channel activation, highlighting differences in the gating mechanism of TRPV1 and voltage-gated ion channels. Here, however, we argue that the structural dynamics rather than quiescence of S1-S4 domains is necessary for capsaicin-mediated activation of TRPV1. Using fluorescent unnatural amino acid (flUAA) incorporation and voltage-clamp fluorometry (VCF) analysis, we directly observed allostery of the S1-S4 bundle upon capsaicin binding. Covalent occupation of VCF-identified sites, single-channel recording, cell apoptosis analysis, and exploration of the role of PSFL828, a novel non-vanilloid agonist we identified, have collectively confirmed the essential role of this coordinated S1-S4 motility in capsaicin-mediated activation of TRPV1. This study concludes that, in contrast to cryo-EM structural studies, vanilloid agonists are also required for S1-S4 movement during TRPV1 activation. Redefining the gating process of vanilloid agonists and the discovery of new non-vanilloid agonists will allow the evaluation of new strategies aimed at the development of TRPV1 modulators.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Capsaicina/farmacologia , Canais de Cátion TRPV/agonistas , Microscopia Crioeletrônica , Domínios Proteicos
20.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552723

RESUMO

Transient receptor potential (TRP) channels belong to a superfamily of integral membrane proteins with diverse functions in sensory perception and cellular physiology [...].


Assuntos
Sistema Cardiovascular , Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Sistema Cardiovascular/metabolismo , Sensação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...