Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Oncogene ; 43(38): 2835-2849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39155296

RESUMO

Metabolic reprogramming and cellular senescence greatly contribute to cancer relapse and recurrence. In aging and treated prostate, persistent accumulating senescence-associated secretory phenotype (SASP) of cancer cells often limits the overall survival of patients. Novel strategic therapy with monoacylglycerol lipase (MGLL) upregulation that counters the cellular and docetaxel induced SASP might overcome this clinical challenge in prostate cancer (PCa). With primary comparative expression and survival analysis screening of fatty acid (FA) metabolism signature genes in the TCGA PCa dataset and our single center cohort, MGLL was detected to be downregulated in malignancy prostate tissues and its low expression predicted worse progression-free and overall survival. Functionally, overexpression of MGLL mainly suppresses NF-κB-driven SASP (N-SASP) which mostly restricts the cancer cell paracrine and autocrine tumorigenic manners and the corresponding cellular senescence. Further investigating metabolites, we determined that MGLL constitutive expression prevents lipid accumulation, decreases metabolites preferably, and consequently downregulates ATP levels. Overexpressed MGLL inhibited IκBα phosphorylation, NF-κB p65 phosphorylation, and NF-κB nuclear translocation to deactivate NF-κB transcriptional activities, and be responsible for the repressed N-SASP, partially through reducing ATP levels. Preclinically, combinational treatment with MGLL overexpression and docetaxel chemotherapy dramatically delays tumor progression in mouse models. Taken together, our findings identify MGLL as a switch for lipase-related N-SASP suppression and provide a potential drug candidate for promoting docetaxel efficacy in PCa.


Assuntos
Docetaxel , Monoacilglicerol Lipases , NF-kappa B , Neoplasias da Próstata , Masculino , Docetaxel/farmacologia , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Animais , NF-kappa B/metabolismo , Camundongos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Fenótipo Secretor Associado à Senescência/genética , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Sci Rep ; 14(1): 9411, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658579

RESUMO

Matrix Metalloproteinases (MMPs) have been demonstrated to be essential in facilitating the migration and metastasis of clear cell renal cell carcinoma (ccRCC). However, the ability of the MMP family to predict clinical outcomes and guide optimal therapeutic strategies for ccRCC patients remains incompletely understood. In this investigation, we initially conducted a thorough examination of the MMP family in pan-cancer. Notably, MMPs exhibited distinctive significance in ccRCC. Following this, we undertook an extensive analysis to evaluate the clinical value of MMPs and potential mechanisms by which MMPs contribute to the progression of ccRCC. A novel stratification method and prognostic model were developed based on MMPs in order to enhance the accuracy of prognosis prediction for ccRCC patients and facilitate personalized treatment. By conducting multi-omics analysis and transcriptional regulation analysis, it was hypothesized that SAA1 plays a crucial role in promoting ccRCC migration through MMPs. Subsequently, in vitro experiments confirmed that SAA1 regulates ccRCC cell migration via the ERK-AP1-MMPs axis. In conclusion, our study has explored the potential value of the MMP family as prognostic markers for ccRCC and as guides for medication regimens. Additionally, we have identified SAA1 as a crucial factor in the migration of ccRCC.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Neoplasias Renais , Metaloproteinases da Matriz , Proteína Amiloide A Sérica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Humanos , Movimento Celular/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Prognóstico , Linhagem Celular Tumoral , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Feminino , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Transdução de Sinais
5.
J Exp Clin Cancer Res ; 42(1): 215, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599359

RESUMO

BACKGROUND: N7-methylguanosine (m7G) modification is, a more common epigenetic modification in addition to m6A modification, mainly found in mRNA capsids, mRNA interiors, transfer RNA (tRNA), pri-miRNA, and ribosomal RNA (rRNA). It has been found that m7G modifications play an important role in mRNA transcription, tRNA stability, rRNA processing maturation, and miRNA biosynthesis. However, the role of m7G modifications within mRNA and its "writer" methyltransferase 1(METTL1) in tumors, particularly prostate cancer (PCa), has not been revealed. METHODS: The differential expression level of METTL1 between hormone-sensitive prostate cancer (HSPC) and castrate-resistant prostate cancer (CRPC) was evaluated via RNA-seq and in vitro experiments. The effects of METTL1 on CRPC progression were investigated through in vitro and in vivo assays. The upstream molecular mechanism of METTL1 expression upregulation and the downstream mechanism of its action were explored via Chromatin Immunoprecipitation quantitative reverse transcription polymerase chain reaction (CHIP-qPCR), Co-immunoprecipitation (Co-IP), luciferase reporter assay, transcriptome-sequencing, m7G AlkAniline-Seq, and mRNA degradation experiments, etc. RESULTS AND CONCLUSION: Here, we found that METTL1 was elevated in CRPC and that patients with METTL1 elevation tended to have a poor prognosis. Functionally, the knockdown of METTL1 in CRPC cells significantly limited cell proliferation and invasive capacity. Mechanistically, we unveiled that P300 can form a complex with SP1 and bind to the promoter region of the METTL1 gene via SP1, thereby mediating METTL1 transcriptional upregulation in CRPC. Subsequently, our findings indicated that METTL1 leads to enhanced mRNA stability of CDK14 by adding m7G modifications inside its mRNA, ultimately promoting CRPC progression.


Assuntos
Metiltransferases , Neoplasias de Próstata Resistentes à Castração , Fator de Transcrição Sp1 , Humanos , Masculino , Proliferação de Células , Imunoprecipitação da Cromatina , Quinases Ciclina-Dependentes , Metiltransferases/genética , MicroRNAs , Neoplasias de Próstata Resistentes à Castração/genética , Estabilidade de RNA
7.
Cancer Rep (Hoboken) ; 6(8): e1824, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344930

RESUMO

BACKGROUND: The six-transmembrane epithelial antigen of the prostate 3 (STEAP3) is a metalloreductase, which is essential for iron uptake. Existing literature has shown that STEAP3 may perform an important role in the onset and progression of tumors. Nonetheless, a complete pan-cancer investigation of the prognostic significance and immune properties of STEAP3 is currently unavailable. AIMS: As part of our investigation into the possible functions of STEAP3 in malignancies, we conducted a comprehensive analysis to examine the prognostic value and immune features of STEAP3 in human pan-cancer. METHODS AND RESULTS: R and Cytoscape programs were applied to analyze and visualize the data. The expression of STEAP3 in both cell lines and tissues was measured utilizing a variety of approaches. Using the shRNA knockdown technique, we tested the viability of the A498 and 786-O cell lines and validated their functions. Both CCK-8 and transwell assays were conducted to estimate cell proliferation and invasion. The expression of STEAP3 was substantially elevated and was shown to be linked to prognosis in the majority of malignancies, notably in clear cell renal cell carcinoma (ccRCC). In addition, the expression of STEAP3 was shown to have a strong correlation with immune infiltrates, which in turn triggered the recruitment and polarization of M2 macrophages in ccRCC. The protein STEAP3 shows promise as a predictor of responses to immune-checkpoint blockade (ICB) therapy. Positive links between STEAP3 and the epithelial-mesenchymal transition (EMT), the p53 pathway, and the immune-associated pathways were also found in the enrichment analysis. Our results illustrated that the STEAP3 expression level was substantially elevated in ccRCC tissues and suggested that it could stimulate EMT in ccRCC by downregulating CDH1. CONCLUSION: In a diverse range of cancers, STEAP3 might serve as a biomarker for determining the prognosis as well as a predictor of immunotherapy responsiveness. STEAP3 is a novel biological marker for determining prognosis, and it also performs a remarkable function in the promotion of tumor growth in ccRCC by enhancing invasion and EMT, as well as by triggering the recruitment and polarization of M2 macrophages.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Próstata/patologia , Proliferação de Células/genética
9.
Cell Death Dis ; 14(4): 289, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095108

RESUMO

As the most common modification of RNA, N6-methyladenosin (m6A) has been confirmed to be involved in the occurrence and development of various cancers. However, the relationship between m6A and castration resistance prostate cancer (CRPC), has not been fully studied. By m6A-sequencing of patient cancer tissues, we identified that the overall level of m6A in CRPC was up-regulated than castration sensitive prostate cancer (CSPC). Based on the analysis of m6A-sequencing data, we found m6A modification level of HRas proto-oncogene, GTPase (HRAS) and mitogen-activated protein kinase kinase 2 (MEK2 or MAP2K2) were enhanced in CRPC. Specifically, tissue microarray analysis and molecular biology experiments confirmed that METTL3, an m6A "writer" up-regulated after castration, activated the ERK pathway to contribute to malignant phenotype including ADT resistance, cell proliferation and invasion. We revealed that METTL3-mediated ERK phosphorylation by stabilizing the transcription of HRAS and positively regulating the translation of MEK2. In the Enzalutamide-resistant (Enz-R) C4-2 and LNCap cell line (C4-2R, LNCapR) established in the current study, the ERK pathway was confirmed to be regulated by METTL3. We also found that applying antisense oligonucleotides (ASOs) to target the METTL3/ERK axis can restore Enzalutamide resistance in vitro and in vivo. In conclusion, METTL3 activated the ERK pathway and induced the resistance to Enzalutamide by regulating the m6A level of critical gene transcription in the ERK pathway.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Androgênios , Receptores Androgênicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Nitrilas , Proliferação de Células , Metiltransferases
10.
Cell Death Dis ; 14(3): 215, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973255

RESUMO

Enabled resistance or innate insensitiveness to antiandrogen are lethal for castration-resistant prostate cancer (CRPC). Unfortunately, there seems to be little can be done to overcome the antiandrogen resistance because of the largely unknown mechanisms. In prospective cohort study, we found that HOXB3 protein level was an independent risk factor of PSA progression and death in patients with metastatic CRPC. In vivo, upregulated HOXB3 contributed to CRPC xenografts progression and abiraterone resistance. To uncover the mechanism of HOXB3 driving tumor progression, we performed RNA-sequencing in HOXB3 negative (HOXB3-) and HOXB3 high (HOXB3 + ) staining CRPC tumors and determined that HOXB3 activation was associated with the expression of WNT3A and enriched WNT pathway genes. Furthermore, extra WNT3A and APC deficiency led HOXB3 to be isolated from destruction-complex, translocated to nuclei, and then transcriptionally regulated multiple WNT pathway genes. What's more, we also observed that the suppression of HOXB3 could reduce cell proliferation in APC-downregulated CRPC cells and sensitize APC-deficient CRPC xenografts to abiraterone again. Together, our data indicated that HOXB3 served as a downstream transcription factor of WNT pathway and defined a subgroup of CRPC resistant to antiandrogen which would benefit from HOXB3-targeted therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Prospectivos , Genes Homeobox , Antagonistas de Androgênios , Via de Sinalização Wnt , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
11.
Cell Death Dis ; 13(11): 927, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335093

RESUMO

Androgen receptor (AR) plays an important role in the progression of prostate cancer and has been targeted by castration or AR-antagonists. The emergence of castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) is inevitable. However, it is not entirely clear how ADT fails or how it causes resistance. Through analysis of RNA-seq data, we nominate ARHGEF2 as a pivotal androgen-repressed gene. We show that ARHGEF2 is directly suppressed by androgen/AR. AR occupies the enhancer and communicates with the promoter region of ARHGEF2. Functionally, ARHGEF2 is important for the growth, lethal phenotype, and survival of CRPC cells and tumor xenografts. Correspondingly, AR inhibition or AR antagonist treatment can restore ARHGEF2 expression, thereby allowing prostate cancer cells to induce treatment resistance and tolerance. Overall, our findings provide an explanation for the contradictory clinical results that ADT resistance may be caused by the up-regulation of ARHGEF2 and provide a novel target.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Próstata/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
12.
Dis Markers ; 2022: 3780391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983409

RESUMO

Background: A rising amount of data demonstrates that the epithelial-mesenchymal transition (EMT) in clear cell renal cell carcinomas (ccRCC) is connected with the advancement of the cancer. In order to understand the role of EMT in ccRCC, it is critical to integrate molecules involved in EMT into prognosis prediction. The objective of this project was to establish a prognosis prediction model using genes associated with EMT in ccRCC. Methods: We acquired the mRNA expression profiles and clinical information about ccRCC from TCGA database. In this study, we measured differentially expressed EMT-related genes (DEEGs) by two comparison groups (tumor versus normal tissues; "stages I-II" versus "stages III-IV" tumor tissues). Based on classification and regression random forest models, we identified the most important DEEGs in predicting prognosis. Afterwards, a risk-score model was created using the identified important DEEGs. The prediction ability of the risk-score model was calculated by the area under the curve (AUC). A nomogram for prognosis prediction was built using the risk-score in combination with clinical factors. Results: Among the 72 DEEGs, the classification and regression random forest models identified six hub genes (DKK1, DLX4, IL6, KCNN4, RPL22L1, and SPDEF), which exhibited the highest importance values in both models. Through the expression of these six hub genes, a novel risk-score was developed for the prognosis prediction of ccRCC. ROC curves showed the risk-score performed well in both the training (0.749) and testing (0.777) datasets. According to the survival analysis, individuals who were separated into high/low-risk groups had statistically different outcomes in terms of prognosis. Besides, the risk-score model also showed outstanding ability in assessing the progression of ccRCC after treatment. In terms of nomogram, the concordance index (C-index) was 0.79. Additionally, we predicted the differences in response to chemotherapy drugs among patients from low- and high-risk groups. Conclusion: Gene signatures related to EMT could be useful in predicting ccRCC prognosis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio , Humanos , Neoplasias Renais/patologia , Prognóstico , Fatores de Transcrição/genética
13.
Epigenomics ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852112

RESUMO

Aims: We aimed to determine whether intronic circRNA acts as a molecular sponge in castration-resistant prostate cancer (CRPC). Materials & methods: A gene chip technique was used to conduct sequencing. A qPCR experiment was performed to verify the result. Radioimmunoprecipitation, RNA pull-down and dual-luciferase reporter assays were performed to particularly expound its function. Verification of downstream effects was carried out through qPCR and western blot, and a xenograft assay was performed in vivo for verification. Results: Intronic circRNA hsa_circ_0092339 in the nucleus was highly expressed in CRPC cell lines. hsa_circ_0092339 did not regulate the expression of its parental gene. hsa_circ_0092339 functions like a molecular sponge, preventing degradation of C-MYC mRNA by absorbing hsa-mir-940. Conclusion: hsa_circ_0092339 plays a critical role in CRPC through targeting C-MYC indirectly by absorbing hsa-mir-940.


Our research breaks the mold by investigating a novel function of RNA and a novel regulatory mechanism. Our research provides a new therapeutic target for prostate cancer treatment and broadens the understanding of prostate cancer.

14.
Prostate ; 82(4): 464-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037281

RESUMO

OBJECTIVES: This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS: All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS: Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION: The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.


Assuntos
Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Reparo do DNA/genética , Compostos de Platina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Idoso , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carboplatina/uso terapêutico , Carcinoma Neuroendócrino/patologia , Cisplatino/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
15.
Oncogene ; 41(3): 387-399, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34759344

RESUMO

Castration-resistant prostate cancer (CRPC) is a highly malignant type of advanced cancer resistant to androgen deprivation therapy. One of the important mechanisms for the development of CRPC is the persistent imbalanced regulation of AR and AR splice variants (AR/AR-Vs). In this study, we reported KDM4A-AS1, a recently discovered lncRNA, as a tumor promoter that was significantly increased in CRPC cell lines and cancer tissues. Depletion of KDM4A-AS1 significantly reduced cell viability, proliferation, migration in vitro, and tumor growth in vivo. We found that by binding to the NTD domain, KDM4A-AS1 enhances the stability of USP14-AR/AR-Vs complex, and promoted AR/AR-Vs deubiquitination to protect it from MDM2-mediated ubiquitin-proteasome degradation. Moreover, KDM4A-AS1 was found to enhance CRPC drug resistance to enzalutamide by repressing AR/AR-Vs degradation; antisense oligonucleotide drugs targeting KDM4A-AS1 significantly reduced the growth of tumors with enzalutamide resistance. Taken together, our results indicated that KDM4A-AS1 played an important role in the progression of CRPC and enzalutamide resistance by regulating AR/AR-Vs deubiquitination; targeting KDM4A-AS1 has broad clinical application potential.


Assuntos
Benzamidas/uso terapêutico , Histona Desmetilases com o Domínio Jumonji/metabolismo , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia
16.
Bioengineered ; 12(1): 2649-2663, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34116604

RESUMO

In recent years, genes associated with N6-methyladenosine (m6A) modification were found to participate in modulation of multiple tumor biological processes. Concomitantly, the significantly complicated dual effects of tumor microenvironment have been observed on cancer progression. The present study aims to investigate m6A-related immune genes (m6AIGs) for their signatures and prognostic values in bladder cancer (BC). Out of 2856 differentially expressed genes (DEGs) of BC, a total of 85 genes were obtained following intersection of DEGs, immune genes and m6A-related genes. The results of multivariate Cox regression analysis illustrated four genes (BGN, GRK5, IL32, and SREBF1) were significantly associated with the prognosis of BC patients. The BC samples were divided into two types based on the consensus clustering, and the principal component analysis demonstrated a separation between them. It was found that high expression of BGN and GRK5 were linked with advanced T and N stage, and the expression of SREBF1 in early T stage was higher than that in advanced T stage. Subsequently, the nomogram to predict 3- and 5-year survival probability of BC patients was developed and calibrated. GSEA analysis for risk subgroups showed WNT and TGF-beta signaling pathways were involved in regulation of BC progression in high risk level group. In the low risk level group, cytosolic DNA-Sensing cGAS-STING and RIG-I-like receptors signaling pathways were found to be correlated with BC development. These findings provide a novel insight on studies for BC progression.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais , Transcriptoma , Neoplasias da Bexiga Urinária , Adenosina/genética , Adenosina/imunologia , Adenosina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Humanos , Prognóstico , Transcriptoma/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade
17.
J Exp Clin Cancer Res ; 39(1): 36, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066485

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are an important part of the tumour microenvironment, and their functions are of great concern. This series of experiments aimed to explore how Yes-associated protein 1 (YAP1) regulates the function of stromal cells and how the normal fibroblasts (NFs) convert into CAFs in prostate cancer (PCa). METHODS: The effects of conditioned media from different fibroblasts on the proliferation and invasion of epithelial cells TrampC1 were examined. We then analysed the interaction between the YAP1/TEAD1 protein complex and SRC, as well as the regulatory function of the downstream cytoskeletal proteins and actins. A transplanted tumour model was used to explore the function of YAP1 in regulating tumour growth through stromal cells. The relationship between the expression of YAP1 in tumour stromal cells and the clinical characteristics of PCa patients was analysed. RESULTS: The expression level of YAP1 was significantly upregulated in PCa stromal cells. After the expression level of YAP1 was increased, NF was transformed into CAF, enhancing the proliferation and invasion ability of epithelial cells. The YAP1/TEAD1 protein complex had the capability to influence downstream cytoskeletal proteins by regulating SRC transcription; therefore, it converts NF to CAF, and CAF can significantly promote tumour growth and metastasis. The high expression of YAP1 in the tumour stromal cells suggested a poor tumour stage and prognosis in PCa patients. CONCLUSION: YAP1 can convert NFs into CAFs in the tumour microenvironment of PCa, thus promoting the development and metastasis of PCa. Silencing YAP1 in tumour stromal cells can effectively inhibit tumour growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fibroblastos Associados a Câncer/metabolismo , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Modelos Biológicos , Estadiamento de Neoplasias , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
18.
Oncogene ; 38(24): 4885, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31048775

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nucleic Acids Res ; 47(8): 4211-4225, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773595

RESUMO

In PTEN-deficient prostate cancers, AKT signaling may be activated upon suppression of androgen receptor signaling. Activation of AKT as well as NF-κB signaling involves a key regulatory protein complex containing PHLPP, FKBP51 and IKKα. Here, we report a critical role of lncRNA PCAT1 in regulating the PHLPP/FKBP51/IKKα complex and progression of castration-resistant prostate cancer (CRPC). Using database queries, bioinformatic analyses, as well as RIP and RNA pull-down assays, we discovered and validated that the lncRNA-PCAT1 perturbs the PHLPP/FKBP51/IKKα complex and activates AKT and NF-κB signaling. Expression of lncRNA-PCAT1 is positively linked to CRPC progression. PCAT1 binds directly to FKBP51, displacing PHLPP from the PHLPP/FKBP51/IKKα complex, leading to activation of AKT and NF-κB signaling. Targeting PCAT1 restores PHLPP binding to FKBP1 leading to suppression of AKT signaling. Preclinical study in a mouse model of CRPC suggests therapeutic potential by targeting lncRNA PCAT1 to suppress CRPC progression. Together, the newly identified PCAT1/FKBP51/IKKα complex provides mechanistic insight in the interplay between AKT, NF-κB and AR signaling in CRPC, and the preclinical studies suggest that a novel role for PCAT1 as a therapeutic target.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , NF-kappa B/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Conjuntos de Dados como Assunto , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncogene ; 38(24): 4875-4884, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30770901

RESUMO

Castration-resistant prostate cancer (CRPC) with neuroendocrine differentiation (NED) is a lethal disease for which effective therapies are urgently needed. The mechanism underlying development of CRPC with NED, however, remains largely uncharacterized. In this study, we explored and characterized the functional role of neurotensin (NTS) in cell line and animal models of CRPC with NED. NTS was acutely induced by androgen deprivation in animal models of prostate cancer (PCa) and activated downstream signaling leading to NED through activation of neurotensin receptor 1 (NTSR1) and neurotensin receptor 3 (NTSR3), but not neurotensin receptor 2 (NTSR2). Our findings also revealed the existence of a CK8+/CK14+ subpopulation in the LNCaP cell line that expresses high levels of both NTSR1 and NTSR3, and displays an enhanced susceptibility to develop neuroendocrine-like phenotypes upon treatment with NTS. More importantly, NTSR1 pathway inhibition prevented the development of NED and castration resistance in vivo. We propose a novel role of NTS in the development of CRPC with NED, and a possible strategy to prevent the onset of NED by targeting the NTS signaling pathway.


Assuntos
Transdiferenciação Celular/genética , Células Neuroendócrinas/fisiologia , Neurotensina/fisiologia , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Neurotensina/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...