Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2352-2359, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282864

RESUMO

This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.


Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Neoplasias , Feminino , Camundongos , Animais , Transportador de Glucose Tipo 1/genética , Farmacologia em Rede , Solução Salina , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Transdução de Sinais , Glicólise , RNA Mensageiro , Neoplasias/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
Alzheimers Res Ther ; 15(1): 33, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797783

RESUMO

BACKGROUND: Toll-like receptor 3 (TLR3) plays an important role in the immune/inflammatory response in the nervous system and is a main pathological feature of Alzheimer's disease (AD). This study investigates the role of early activation of TLR3 in the pathophysiological process of AD. METHODS: In the experiment, the agonist of TLR3, Poly(I:C), was intraperitoneally injected into the APP/PS1 mouse model of AD and wild-type control mice starting from the age of 4 to 9 months. At the age of 14 months, behavioral tests were conducted. Western blot and immunohistochemistry staining were used to evaluate the level of amyloid ß-protein (Aß), the activation of inflammatory cells, and neuron loss. In addition, the levels of inflammatory cytokines were measured using a quantitative polymerase chain reaction. RESULTS: The results demonstrated that the early activation of TLR3 attenuated neuronal loss and neurobehavioral dysfunction. Moreover, the early activation of TLR3 reduced Aß deposition, inhibited the activation of microglia and astrocytes, and decreased the transcription of pro-inflammatory factors in the hippocampus. CONCLUSIONS: The results indicated that the activation of TLR3 by Poly (I:C) in the early stage of development of AD in a mouse model attenuated neuron loss and improved neurobehavioral functions. The underlying mechanisms could be attributed to its role in Aß clearance, the inhibition of glial cells, and the regulation of neuroinflammation in the hippocampus.


Assuntos
Doença de Alzheimer , Receptor 3 Toll-Like , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Presenilina-1/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
3.
CNS Neurosci Ther ; 29(6): 1585-1601, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794556

RESUMO

OBJECTIVE: Progesterone receptor membrane component 2 (PGRMC2) belongs to the membrane-associated progesterone receptor family, which regulates multiple pathophysiological processes. However, the role of PGRMC2 in ischemic stroke remains unexplored. The present study sought to determine the regulatory role of PGRMC2 in ischemic stroke. METHODS: Male C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAO). The protein expression level and localization of PGRMC2 were examined by western blotting and immunofluorescence staining. The gain-of-function ligand of PGRMC2 (CPAG-1, 45 mg/kg) was intraperitoneally injected into sham/MCAO mice, and brain infarction, blood-brain barrier (BBB) leakage, and sensorimotor functions were evaluated by magnetic resonance imaging, brain water content, Evans blue extravasation, immunofluorescence staining, and neurobehavioral tests. The astrocyte and microglial activation, neuronal functions, and gene expression profiles were revealed by RNA sequencing, qPCR, western blotting, and immunofluorescence staining after surgery and CPAG-1 treatment. RESULTS: Progesterone receptor membrane component 2 was elevated in different brain cells after ischemic stroke. Intraperitoneal delivery of CPAG-1 reduced infarct size, brain edema, BBB leakage, astrocyte and microglial activation, and neuronal death, and improved sensorimotor deficits after ischemic stroke. CONCLUSION: CPAG-1 acts as a novel neuroprotective compound that could reduce neuropathologic damage and improve functional recovery after ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/patologia , Isquemia Encefálica/metabolismo , Mutação com Ganho de Função , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Receptores de Progesterona/metabolismo , Acidente Vascular Cerebral/patologia
4.
Front Neurosci ; 16: 884667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464309

RESUMO

Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.

5.
Exp Neurol ; 347: 113893, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653511

RESUMO

This study investigated the expression of progesterone receptor membrane component 1 (pgrmc1) in the brains of male and female mice, and the effect of inhibiting pgrmc1 on neonatal hypoxic-ischemic (HI) cerebral injury in male mice. A mouse model of neonatal HI brain injury was established, and AG205, a specific antagonist of pgrmc1, was injected into the left lateral cerebral ventricle 1 h before HI. Histological staining, behavior testing, Western blots, and quantitative PCR (qPCR) were employed to evaluate pgrmc1 expression, brain damage, neurological function, and molecular mechanisms. Results demonstrated that the mRNA and protein levels of pgrmc1 increased significantly in the cortex and hippocampus 72 h after HI without sex differences. The inhibition of pgrmc1 exacerbated the neonatal brain damage in the acute stage of HI in male mice as seen in the increase in brain water content, infarction area, and neuronal death. Inhibition of pgrmc1 also aggravated the neurological dysfunction and anxiety induced by HI brain injury. In addition, inhibition of pgrmc1 activated the NF-kB signaling and NF-κB-mediated cytokines, and inhibited BDNF/PI3K/AKT pathway in the brains of the newborn HI mice. The results indicated that pgrmc1 inhibition exacerbated the brain damage in newborn male mice subjected to HI by activating IκBα/NFκB signaling and inhibiting BDNF/PI3K/Akt pathway.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Transdução de Sinais/fisiologia
6.
Front Pharmacol ; 12: 645354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234669

RESUMO

Inflammation is an important contributor to autoimmune thyroiditis. Yanghe decoction (YH) is a traditional Chinese herbal formulation which has various anti-inflammatory effects. It has been used for the treatment of autoimmune diseases such as ankylosing spondylitis In this study we aimed to investigate the effects of YH on autoimmune thyroiditis in a rat model and elucidate the underlying mechanisms. The experimental autoimmune thyroiditis (EAT) model was established by thyroglobulin (pTG) injections and excessive iodine intake. Thyroid lesions were observed using hematoxylin and eosin (H and E) staining and serum TgAb, TPOAb, TSH, T3, and T4 levels were measured by enzyme-linked immunosorbent assay IL-35 levels were evaluated using real-time polymerase chain reaction (RT-PCR) and Th17/Treg balance in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry and RT-PCR. Changes in Wnt/ß-catenin signaling were evaluated using Western blot. Immunofluorescence staining and western blot were employed to examine NLRP3 inflammasome activation in the thyroid. YH minimized thyroid follicle injury and decreased concentrations of serum TgAb, TPOAb, TSH, T3, and T4 in EAT model. The mRNA of IL-35 was increased after YH treatment. YH also increased the percentage of Treg cells, and decreased Th17 proportion as well as Th17/Treg ratio in PBMCs. Meanwhile, the mRNA levels of Th17 related cytokines (RORγt, IL-17A, IL-21, and IL-22) were suppressed and Treg related cytokines (FoxP3, TGF-ß, and IL-10) were promoted in PBMCs. Additionally, the protein expressions of Wnt-1 and ß-catenin were unregulated after YH treatment. NLRP3 immunostaining signal and protein levels of IL-17, p-NF-κB, NLRP3, ASC, cleaved-Caspase-1, cleaved-IL-1ß, and IL-18 were downregulated in the thyroid after YH intervention. Overall, the present study demonstrated that YH alleviated autoimmune thyroiditis in rats by improving NLRP3 inflammasome and immune dysregulation.

7.
Med Sci Monit ; 26: e922561, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32594094

RESUMO

BACKGROUND This study aimed to investigate the effects of the paeonol-platinum(II) (PL-Pt[II]) complex on SW1736 human anaplastic thyroid carcinoma cell line and the BHP7-13 human thyroid papillary carcinoma cell line in vitro and on mouse SW1736 tumor xenografts in vivo. MATERIAL AND METHODS The cytotoxic effects of the PL-Pt(II) complex on SW1736 cells and BHP7-13 cells was measured using the MTT assay. Western blot measured the expression levels of cyclins, cell apoptotic proteins, and signaling proteins. DNA content and apoptosis were detected by flow cytometry. SW1736 cell thyroid tumor xenografts were established in mice followed by treatment with the PL-Pt(II) complex. RESULTS Treatment of the SW1736 and BHP7-13 cells with the PL-Pt(II) complex reduced cell proliferation in a dose-dependent manner, with an IC50 of 1.25 µM and 1.0 µM, respectively, and increased the cell fraction in G0/G1phase, inhibited p53, cyclin D1, promoted p27 and p21 expression, and significantly increased the sub-G1 fraction. Treatment with the PL-Pt(II) complex increased caspase-3 degradation, reduced the expression of p-4EBP1, p-4E-BP1 and p-S6, and reduced the expression of p-ERK1/2 and p-AKT. Treatment with the PL-Pt(II) complex reduced the volume of the SW1736 mouse tumor xenografts on day 14 and day 21, and reduced AKT phosphorylation and S6 protein expression and increased degradation of caspase-3. CONCLUSIONS The cytotoxic effects of the PL-Pt(II) complex in human thyroid carcinoma cells, including activation of apoptosis and an increased sub-G1 cell fraction of the cell cycle, were mediated by down-regulation of the mTOR pathway.


Assuntos
Acetofenonas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos de Platina/farmacologia , Serina-Treonina Quinases TOR/efeitos dos fármacos , Câncer Papilífero da Tireoide/genética , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Western Blotting , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/efeitos dos fármacos , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Humanos , Técnicas In Vitro , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...