Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(6): 845-856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221658

RESUMO

OBJECTIVE: The specific role of fibroblast-like synoviocytes (FLSs) in the pathogenesis of rheumatoid arthritis (RA) is still not fully elucidated. This study aimed to explore the molecular mechanisms of epigenetic pathways, including three epigenetic factors, microRNA (miRNA)-22 (MIR22), ten-eleven translocation methylcytosine dioxygenase 3 (TET3), and MT-RNR2 like 2 (MTRNR2L2), in RA-FLSs. METHODS: The expression of MIR22, TET3, and MTRNR2L2 in the synovium of patients with RA and arthritic mice were determined by fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), immunohistochemistry, and Western blot. Mir22-/- and Tet3+/- mice were used to establish a collagen antibody-induced arthritis (CAIA) model. Mir22 angomir and Tet3 small interfering RNA (siRNA) were used to illustrate the therapeutic effects on arthritis using a collagen-induced (CIA) model. Bioinformatics, luciferase reporter assay, 5-hydroxymethylcytosine (5hmC) dot blotting, chromatin immunoprecipitation-qPCR, and hydroxymethylated DNA immunoprecipitation were conducted to show the direct repression of MIR22 on the TET3 and transcriptional activation of TET3 on MTRNR2L2. RESULTS: The Mir22-/- CAIA model and RA-FLS-related in vitro experiments demonstrated the inhibitory effect of MIR22 on inflammation. MIR22 can directly inhibit the translation of TET3 in RA-FLSs by binding to its 3' untranslated region in TET3. The Tet3+/- mice-established CAIA model showed less severe symptoms of arthritis in vivo. In vitro experiments further confirmed the proinflammatory effect of TET3 in RA. In addition, the CIA model was used to validate the therapeutic effects of Mir22 angomir and Tet3 siRNA. Finally, TET3 exerts its proinflammatory effect by promoting 5hmC production in the promoter of its target MTRNR2L2 in RA-FLSs. CONCLUSION: The key role of the MIR22-TET3-MTRNR2L2 pathway in RA-FLSs provided an experimental basis for further studies into the pathogenesis and related targets of RA from the perspective of FLSs.


Assuntos
Artrite Experimental , Artrite Reumatoide , Dioxigenases , Epigênese Genética , MicroRNAs , Sinoviócitos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Humanos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Sinoviócitos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fibroblastos/metabolismo , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Membrana Sinovial/metabolismo , Camundongos Endogâmicos DBA
2.
J Transl Med ; 21(1): 654, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740183

RESUMO

BACKGROUND: The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS: In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS: We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS: We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.


Assuntos
Antígeno CD47 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/terapia , Macrófagos , Fagocitose , Microambiente Tumoral
3.
Life Sci ; 320: 121558, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889666

RESUMO

Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Microglia , Células-Tronco Neoplásicas , Macrófagos Associados a Tumor , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Humanos , Animais , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Glioma/radioterapia , Transdução de Sinais , Ativação de Macrófagos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Microambiente Tumoral
4.
Int Immunopharmacol ; 116: 109755, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724626

RESUMO

Rheumatoid arthritis (RA) is a multisystemic and inflammatory autoimmune disease characterized by joint destruction. The C-C motif chemokine receptor 2 (CCR2) is mainly expressed in monocytes and T cells, initiating their migration to sites of inflammation, ultimately leading to cartilage damage and bone destruction. CCR2 has long been considered a prospective target for treating autoimmune diseases. However, clinical studies on inhibitors or neutralizing antibodies against CCR2 in RA have exhibited limited efficacy. Recent evidence indicates that CCR2 may play different roles in RA. Hence, a comprehensive understanding regarding the role of CCR2 may facilitate the development of targeted drugs and provide novel insights for improving CCL2-mediated inflammatory diseases. This review summarizes the biological characteristics of CCR2, the related signaling pathways, and recent developments in CCR2-targeting therapeutics.


Assuntos
Artrite Reumatoide , Receptores CCR2 , Humanos , Quimiocina CCL2/metabolismo , Inflamação/tratamento farmacológico , Monócitos , Receptores CCR2/metabolismo
5.
Ann Rheum Dis ; 82(2): 198-211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198439

RESUMO

OBJECTIVES: To uncover the function and underlying mechanism of an essential transcriptional factor, PU.1, in the development of rheumatoid arthritis (RA). METHODS: The expression and localisation of PU.1 and its potential target, FMS-like tyrosine kinase 3 (FLT3), in the synovium of patients with RA were determined by western blot and immunohistochemical (IHC) staining. UREΔ (with PU.1 knockdown) and FLT3-ITD (with FLT3 activation) mice were used to establish collagen antibody-induced arthritis (CAIA). For the in vitro study, the effects of PU.1 and FLT3 on primary macrophages and fibroblast-like synoviocytes (FLS) were investigated using siRNAs. Mechanistically, luciferase reporter assays, western blotting, FACS and IHC were conducted to show the direct regulation of PU.1 on the transcription of FLT3 in macrophages and FLS. Finally, a small molecular inhibitor of PU.1, DB2313, was used to further illustrate the therapeutic effects of DB2313 on arthritis using two in vivo models, CAIA and collagen-induced arthritis (CIA). RESULTS: The expression of PU.1 was induced in the synovium of patients with RA when compared with that in osteoarthritis patients and normal controls. FLT3 and p-FLT3 showed opposite expression patterns compared with PU.1 in RA. The CAIA model showed that PU.1 was an activator, whereas FLT3 was a repressor, of the development of arthritis in vivo. Moreover, results from in vitro assays were consistent with the in vivo results: PU.1 promoted hyperactivation and inflammatory status of macrophages and FLS, whereas FLT3 had the opposite effects. In addition, PU.1 inhibited the transcription of FLT3 by directly binding to its promoter region. The PU.1 inhibitor DB2313 clearly alleviated the effects on arthritis development in the CAIA and CIA models. CONCLUSIONS: These results support the role of PU.1 in RA and may have therapeutic implications by directly repressing FLT3. Therefore, targeting PU.1 might be a potential therapeutic approach for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteínas Proto-Oncogênicas , Sinoviócitos , Transativadores , Animais , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
6.
J Oncol ; 2022: 1544648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578791

RESUMO

The ever-increasing morbidity associated with gynecological malignancies constantly endangers the physical and psychological health of women. Since a long time, there has been an urgent need for a deeper understanding of the tumorigenesis and the development of gynecological cancer to identify new molecular markers for early diagnosis and metastatic disease prognosis and for the development of therapeutic targets. MicroRNAs are crucial cellular regulators. The microRNA-10 (miR-10) family has been found to play an integral role in the evolution of numerous cancer types. A comprehensive understanding of current studies on miR-10 could provide better insights into future research and clinical applications in related fields. This article reviews the latest research on the role of the miR-10 family in gynecological malignancies and the relevant molecular mechanism, mainly focusing on endometrial, cervical, and ovarian cancers.

7.
Front Immunol ; 13: 1001201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248862

RESUMO

PU.1, a transcription factor member of the E26 transformation-specific family, affects the function of a variety of immune cells in several physiological and pathological conditions. Previous studies studying the role of PU.1 in pathological conditions have mainly focused on immune system-related cancers, and a series of articles have confirmed that PU.1 mutation can induce a variety of immune cell-related malignancies. The underlying mechanism has also been extensively validated. However, the role of PU.1 in other major immune system-related diseases, namely, systemic autoimmune diseases, is still unclear. It was only in recent years that researchers began to gradually realize that PU.1 also played an important role in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), experimental autoimmune encephalomyelitis (EAE) and systemic lupus erythematosus (SLE). This review article summarizes the findings of recent studies that investigated the role of PU.1 in various autoimmune diseases and the related underlying mechanisms. Furthermore, it presents new ideas and provides insight into the role of PU.1 as a potential treatment target for autoimmune diseases and highlights existing research problems and future research directions in related fields.


Assuntos
Encefalomielite Autoimune Experimental , Lúpus Eritematoso Sistêmico , Neoplasias , Animais , Proteínas Proto-Oncogênicas , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...