Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397847

RESUMO

Polyphenolic extracts from wild bilberries (Vaccinium myrtillus L.) have shown antioxidant and anti-inflammatory effects, but they are prone to degradation when exposed to environmental factors, limiting their use in biomedical applications. To overcome this issue, this study proposed the embedding of wild bilberry fruit ethanolic extracts in pristine mesoporous silica functionalized with organic groups (mercaptopropyl and propionic acid), as well as coated with fucoidan, a biopolymer. Herein, we report a stability study of free and incorporated extracts in mesoporous silica-type supports in high-humidity atmospheres at 40 °C up to 28 days, using HPLC analysis, thermal analysis, and radical scavenging activity determination. Better chemical and thermal stability over time was observed when the extracts were incorporated in mesoporous silica-type supports. After 12 months of storage, higher values of antioxidant activity were determined for the extract embedded in the supports, silica modified with mercaptopropyl groups (MCM-SH), and fucoidan-coated silica (MCM-SH-Fuc) than that of the free extract due to a synergistic activity between the support and extract. All encapsulated extracts demonstrated remarkable effects in reducing NO production in LPS-stimulated RAW 264.7 cells. The treatment with extract embedded in MCM-SH-Fuc in a dose of 10 µg/mL surpassed the effect of free extract in the same concentration. For the extract encapsulated in an MCM-SH support, a lower IC50 value (0.69 µg/mL) towards COX-2 was obtained, comparable with that of Indomethacin (0.6 µg/mL). Also, this sample showed a higher selectivity index (2.71) for COX-2 than the reference anti-inflammatory drug (0.98). The developed formulations with antioxidant and anti-inflammatory properties could be further used in nutraceuticals.

2.
Arch Microbiol ; 206(1): 12, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070002

RESUMO

Escherichia coli cell envelope is crucial for stress sensing and signal transduction, mediated by numerous protein-protein interactions to enable adaptation and survival. Interfering with these interactions might affect envelope integrity leading to bacterial death. The outer membrane lipoprotein (RcsF) is the stress sensor of the regulator of capsule synthesis (Rcs) phosphorelay that senses envelope threats. RcsF interacts with two essential proteins, IgaA (repressing the Rcs system) and BamA (inserting ß-barrel proteins in the outer membrane). Disturbing RcsF interactions may alter Rcs signaling and/or membrane integrity thus affecting bacterial survival. Here, we derived the sequence of a peptide mimicking RcsF (RcsFmim), based on the in silico docking of RcsF with IgaA. Expression of rcsFmim caused 3-to-4-fold activation of the Rcs system and perturbation of the outer membrane. Both effects result in decreased E. coli growth rate. We anticipate that RcsFmim present a candidate for future antibacterial peptide development.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Peptídeos/metabolismo
3.
Microbiol Spectr ; : e0134423, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707241

RESUMO

Biosynthetic gene clusters (BGCs) are a subset of consecutive genes present within a variety of organisms to produce specialized metabolites (SMs). These SMs are becoming a cornerstone to produce multiple medications including antibacterial and anticancer agents. Natural products (NPs) also play a pivotal role in enhancing the virulence of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which represent a global health threat. We aimed to sequence and computationally analyze the BGCs present in 66 strains pertaining to three different ESKAPE pathogenic species: 21 A. baumannii, 28 K. pneumoniae, and 17 P. aeruginosa strains recovered from clinical settings in Egypt. DNA was extracted using QIAamp DNA Mini kit and Illumina NextSeq 550 was used for whole-genome sequencing. The sequences were quality-filtered by fastp and assembled by Unicycler. BGCs were detected by antiSMASH, BAGEL, GECCO, and PRISM, and aligned using Clinker. The highest abundance of BGCs was detected in P. aeruginosa (590), then K. pneumoniae (146) and the least in A. baumannii strains (133). P. aeruginosa isolates shared mostly the non-ribosomal peptide synthase (NRPS) type, K. pneumoniae isolates shared the ribosomally synthesized and post-translationally modified peptide-like (RiPP-like) type, while A. baumannii isolates shared the siderophore type. Most of the isolates harbored non-ribosomal peptide (NRP) BGCs with few K. pneumoniae isolates encoding polyketide BGCs. Sactipeptides and bottromycin BGCs were the most frequently detected RiPP clusters. We hypothesize that each species' BGC signature confers its virulence. Future experiments will link the detected clusters with their species and determine whether the encoded SMs are produced and cause their virulence. IMPORTANCE Our study analyzes the biosynthetic gene clusters (BGCs) present in 66 assemblies from clinical ESKAPE pathogen isolates pertaining to Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa strains. We report their sequencing and assembly followed by the analysis of their BGCs using several bioinformatics tools. We then focused on the most abundant BGC type in each species and we discussed their potential roles in the virulence of each species. This study is pivotal to further build on its experimental work that deciphers the role in virulence, possible antibacterial effects, and characterization of the encoded specialized metabolites (SMs). The study highlights the importance of studying the "harmful" BGCs and understanding the pathogenicity and virulence of those species, as well as possible benefits if the SMs were used as antibacterial agents. This could be the first study of its kind from Egypt and would shed light on BGCs from ESKAPE pathogens from Egypt.

4.
World J Microbiol Biotechnol ; 39(9): 241, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394567

RESUMO

Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.


Assuntos
Toxinas de Cianobactérias , Cianobactérias , Toxinas Marinhas/metabolismo , Ecossistema , Água Doce/microbiologia , Cianobactérias/metabolismo , Família Multigênica , Microcistinas/genética , Microcistinas/metabolismo
5.
BMC Biomed Eng ; 5(1): 4, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127658

RESUMO

BACKGROUND: Microelectrical Impedance Spectroscopy (µEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using µEIS. µEIS has many advantages, such as portability, disposable sensors, and high-precision results. RESULTS: The paper compares different configurations of interdigitated microelectrodes with and without a passivation layer on the cell contact tracks. The influence of the number of electrodes on the enhancement of the extracted impedance for different types of cells was provided and discussed. Different types of cells are experimentally tested, such as viable and non-viable MCF7, along with different buffer solutions. This study confirms the importance of µEIS for in vivo and in vitro applications. An essential application of µEIS is to differentiate between the cells' sizes based on the measured capacitance, which is indirectly related to the cells' size. The extracted statistical values reveal the capability and sensitivity of the system to distinguish between two clusters of cells based on viability and size. CONCLUSION: A completely portable and easy-to-use system, including different sensor configurations, was designed, fabricated, and experimentally tested. The system was used to extract the dielectric parameters of the Microbeads and MCF7 cells immersed in different buffer solutions. The high sensitivity of the readout circuit, which enables it to extract the difference between the viable and non-viable cells, was provided and discussed. The proposed system can extract and differentiate between different types of cells based on cells' sizes; two other polystyrene microbeads with different sizes are tested. Contamination that may happen was avoided using a Microfluidic chamber. The study shows a good match between the experiment and simulation results. The study also shows the optimum number of interdigitated electrodes that can be used to extract the variation in the dielectric parameters of the cells without leakage current or parasitic capacitance.

6.
Bioorg Chem ; 133: 106427, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841046

RESUMO

Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theß5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.


Assuntos
Produtos Biológicos , Neoplasias , Medicamentos Sintéticos , Humanos , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Medicamentos Sintéticos/farmacologia
7.
Microb Cell Fact ; 21(1): 109, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655185

RESUMO

BACKGROUND: The search for novel antimicrobial agents is crucial as antibiotic-resistant pathogens continue to emerge, rendering the available antibiotics no longer effective. Likewise, new anti-cancer drugs are needed to combat the emergence of multi-drug resistant tumors. Marine environments are wealthy sources for natural products. Additionally, extreme marine environments are interesting niches to search for bioactive natural compounds. In the current study, a fosmid library of metagenomic DNA isolated from Atlantis II Deep Lower Convective Layer (ATII LCL), was functionally screened for antibacterial activity as well as anticancer effects. RESULTS: Two clones exhibited antibacterial effects against the marine Bacillus Cc6 strain, namely clones 102-5A and 88-1G and they were further tested against eleven other challenging strains, including six safe relatives of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter  spp.), a safe relative to Mycobacterium tuberculosis and four resistant clinical isolates. Clone 88-1G resulted in clear zones of inhibition against eight bacterial strains, while clone 102-5A resulted in zones of inhibition against five bacterial strains. The whole cell lysates of clone 88-1G showed 15% inhibition of Mtb ClpP protease -Mycobacterium tuberculosis drug target-, while whole cell lysates of clone 102-5A showed 19% inhibition of Mtb ClpP protease. Whole cell lysates from the selected clones exhibited anticancer effects against MCF-7 breast cancer cells (cell viability at 50% v/v was 46.2% ± 9.9 for 88-1G clone and 38% ± 7 for 102-5A clone), U2OS osteosarcoma cells (cell viability at 50% v/v was 64.6% ± 12.3 for 88-1G clone and 28.3% ± 1.7 for 102-5A clone) and 1BR hTERT human fibroblast cells (cell viability at 50% v/v was 74.4% ± 5.6 for 88-1G clone and 57.6% ± 8.9 for 102-5A clone). Sequencing of 102-5A and 88-1G clones, and further annotation detected putative proteases and putative biosynthetic genes in clones 102-5A and 88-1G, respectively. CONCLUSIONS: The ATII LCL metagenome hosts putative peptidases and biosynthetic genes that confer antibiotic and anti-cancer effects. The tested clones exhibited promising antibacterial activities against safe relative strains to ESKAPE pathogens and Mycobacterium tuberculosis. Thus, searching the microbial dark matter of extreme environments is a promising approach to identify new molecules with pharmaceutical potential use.


Assuntos
Enterococcus faecium , Microbiota , Antibacterianos/farmacologia , Bioprospecção , Humanos , Oceano Índico , Peptídeo Hidrolases , Sais
8.
Pharmaceutics ; 14(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35057098

RESUMO

Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol-loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.

9.
Pharmaceutics ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927897

RESUMO

Following the discovery of cisplatin over 50 years ago, platinum-based drugs have been a widely used and effective form of cancer therapy, primarily causing cell death by inducing DNA damage and triggering apoptosis. However, the dose-limiting toxicity of these drugs has led to the development of second and third generation platinum-based drugs that maintain the cytotoxicity of cisplatin but have a more acceptable side-effect profile. In addition to the creation of new analogs, tumor delivery systems such as liposome encapsulated platinum drugs have been developed and are currently in clinical trials. In this study, we have created the first PEGylated liposomal form of nedaplatin using thin film hydration. Nedaplatin, the main focus of this study, has been exclusively used in Japan for the treatment of non-small cell lung cancer, head and neck, esophageal, bladder, ovarian and cervical cancer. Here, we investigate the cytotoxic and genotoxic effects of free and liposomal nedaplatin on the human non-small cell lung cancer cell line A549 and human osteosarcoma cell line U2OS. We use a variety of assays including ICP MS and the highly sensitive histone H2AX assay to assess drug internalization and to quantify DNA damage induction. Strikingly, we show that by encapsulating nedaplatin in PEGylated liposomes, the platinum uptake cytotoxicity and genotoxicity of nedaplatin was significantly enhanced in both cancer cell lines. Moreover, the enhanced platinum uptake as well as the cytotoxic/antiproliferative effect of liposomal nedaplatin appears to be selective to cancer cells as it was not observed on two noncancer cell lines. This is the first study to develop PEGylated liposomal nedaplatin and to demonstrate the superior cell delivery potential of this product.

10.
Mar Drugs ; 17(5)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071993

RESUMO

The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.


Assuntos
Extremófilos , Metabolismo/genética , Família Multigênica , Água do Mar/microbiologia , Archaea , Bactérias , Biotecnologia , Oceano Índico , Metaboloma/genética , Metagenômica , Dados de Sequência Molecular
11.
Microb Cell Fact ; 18(1): 56, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885206

RESUMO

BACKGROUND: Cancer and infectious diseases are problematic because of continuous emergence of drug resistance. One way to address this enormous global health threat is bioprospecting the unlikeliest environments, such as extreme marine niches, which have tremendous biodiversity that is barely explored. One such environment is the Red Sea brine pool, Atlantis II Deep (ATII). Here, we functionally screened a fosmid library of metagenomic DNA isolated from the ATII lower convective layer (LCL) for antibacterial and anticancer activities. RESULTS: Selected clones, 14-7E and 10-2G, displayed antibacterial effects on the marine strain Bacillus sp. Cc6. Moreover, whole cell lysates from 14-7E and 10-2G exhibited decreased cell viability against MCF-7 (39.1% ± 6.6, 42% ± 8.1 at 50% v/v) and U2OS cells (35.7% ± 1.9, 79.9% ± 5.9 at 50% v/v), respectively. By sequencing the insert DNA from 14-7E and 10-2G, we identified two putative orphan biosynthetic gene clusters. Both clusters harbored putative ATP-binding cassette (ABC) transporter permeases and S-adenosylmethionine-related genes. Interestingly, the biosynthetic gene cluster identified on 14-7E is of archaeal origin and harbors a putative transcription factor. Several identified genes may be responsible for the observed antibacterial and anticancer activities. The 14-7E biosynthetic gene cluster may be encoding enzymes producing a specialized metabolite (effect of detected genes involved in C-C bond formation and glycosylation). The bioactivity may also be due to predicted subtilases encoded by this cluster. The 10-2G cluster harbored putative glycosyltransferase and non-ribosomal peptide synthase genes; thus the observed activity of this clone could be caused by a bioactive peptide. CONCLUSIONS: The ATII LCL prokaryotic metagenome hosts putative orphan biosynthetic gene clusters that confer antibiotic and anticancer effects. Further biochemical studies should characterize the detected bioactive components, and the potential use of 14-7E metabolite for antibiosis and 10-2G metabolite as a selective anti-breast cancer drug.


Assuntos
Metagenoma/genética , Família Multigênica/genética , Água do Mar/microbiologia , Antibacterianos , Antineoplásicos , Biodiversidade , Clonagem Molecular/métodos
12.
Sci Rep ; 6: 30729, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491622

RESUMO

The current study aimed at preparing AgNPs and three different core-shell silver/polymeric NPs composed of Ag core and three different polymeric shells: polyvinyl alcohol (PVA), polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP). Thereafter, the core/shell NPs were loaded with a chemotherapeutic agent doxorubicin (DOX). Finally, the cytotoxic effects of the different core-shell Ag/polymeric NPs-based combinatorial therapeutics were tested in-vitro against breast cancer (MCF-7) and human fibroblast (1BR hTERT) cell lines. AgNPs, Ag/PVA and Ag/PVP NPs were more cytotoxic to MCF-7 cells than normal fibroblasts, as well as DOX-Ag, DOX-Ag/PVA, DOX-Ag/PEG and DOX-Ag/PVP nanocarriers (NCs). Notably, low dosage of core-shell DOX-loaded Ag/polymeric nanocarriers (NCs) exhibited a synergic anticancer activity, with DOX-Ag/PVP being the most cytotoxic. We believe that the prepared NPs-based combinatorial therapy showed a significant enhanced cytotoxic effect against breast cancer cells. Future studies on NPs-based combinatorial therapy may aid in formulating a novel and more effective cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Polímeros/química , Prata/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Humanos , Técnicas In Vitro , Células MCF-7 , Nanoconchas/química , Polietilenoglicóis/química , Álcool de Polivinil/química , Povidona/química
13.
Biomed Res Int ; 2015: 430569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685789

RESUMO

Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death).


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Cisplatino/farmacologia , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Estresse Mecânico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Morte Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...