RESUMO
Successful tuberculosis therapy requires treatment with an unwieldy multidrug combination for several months. Thus, there is a growing need to identify novel genetic vulnerabilities that can be leveraged to develop new, more effective antitubercular drugs. Consequently, recent efforts to optimize TB therapy have exploited Mtb chemical genetics to identify pathways influencing antibiotic efficacy, novel mechanisms of antibiotic action, and new targets for TB drug discovery. However, the influence of the complex host environment on these interactions remains largely unknown, leaving the therapeutic potential of the identified targets unclear. In this study, we leveraged a library of conditional mutants targeting 467 essential Mtb genes to characterize the chemical-genetic interactions (CGIs) with TB drugs directly in the mouse infection model. We found that these in vivo CGIs differ significantly from those identified in vitro . Both drug-specific and drug-agnostic effects were identified, and many were preserved during treatment with a multidrug combination, suggesting numerous strategies for enhancing therapy. This work also elucidated the complex effects of pyrazinamide (PZA), a drug that relies on aspects of the infection environment for efficacy. Specifically, our work supports the importance of coenzyme A synthesis inhibition during infection, as well as the antagonistic effect of iron limitation on PZA activity. In addition, we found that inhibition of thiamine and purine synthesis increases PZA efficacy, suggesting novel therapeutically exploitable metabolic dependencies. Our findings present a map of the unique in vivo CGIs, characterizing the mechanism of PZA activity in vivo and identifying novel targets for TB drug development. Significance: The inevitable rise of multi-drug-resistant tuberculosis underscores the urgent need for new TB drugs and novel drug targets while prioritizing synergistic drug combinations. Chemical-genetic interaction (CGI) studies have delineated bacterial pathways influencing antibiotic efficacy and uncovered druggable pathways that synergize with TB drugs. However, most studies are conducted in vitro , limiting our understanding of how the host environment influences drug-mutant interactions. Using an inducible mutant library targeting essential Mtb genes to characterize CGIs during infection, this study reveals that CGIs are both drug-specific and drug-agnostic and differ significantly from those observed in vitro . Synergistic CGIs comprised distinct metabolic pathways mediating antibiotic efficacy, revealing novel drug mechanisms of action, and defining potential drug targets that would synergize with frontline antitubercular drugs.
RESUMO
Invasive fungal infections are associated with high mortality, which is exacerbated by the limited antifungal drug armamentarium and increasing antifungal drug resistance. Echinocandins are a frontline antifungal drug class targeting ß-glucan synthase (GS), a fungal cell wall biosynthetic enzyme. Echinocandin resistance is generally low but increasing in species like Candida glabrata, an opportunistic yeast pathogen colonizing human mucosal surfaces. Mutations in GS-encoding genes (FKS1 and FKS2 in C. glabrata) are strongly associated with clinical echinocandin failure, but epidemiological studies show that other, as yet unidentified factors also influence echinocandin susceptibility. Furthermore, although the gut is known to be an important reservoir for emergence of drug-resistant strains, the evolution of resistance is not well understood. Here, we studied the evolutionary dynamics of C. glabrata colonizing the gut of immunocompetent mice during treatment with caspofungin, a widely-used echinocandin. Whole genome and amplicon sequencing revealed rapid genetic diversification of this C. glabrata population during treatment and the emergence of both drug target (FKS2) and non-drug target mutations, the latter predominantly in the FEN1 gene encoding a fatty acid elongase functioning in sphingolipid biosynthesis. The fen1 mutants displayed high fitness in the gut specifically during caspofungin treatment and contained high levels of phytosphingosine, whereas genetic depletion of phytosphingosine by deletion of YPC1 gene hypersensitized the wild type strain to caspofungin and was epistatic to fen1Δ. Furthermore, high resolution imaging and mass spectrometry showed that reduced caspofungin susceptibility in fen1Δ cells was associated with reduced caspofungin binding to the plasma membrane. Finally, we identified several different fen1 mutations in clinical C. glabrata isolates, which phenocopied the fen1Δ mutant, causing reduced caspofungin susceptibility. These studies reveal new genetic and molecular determinants of clinical caspofungin susceptibility and illuminate the dynamic evolution of drug target and non-drug target mutations reducing echinocandin efficacy in patients colonized with C. glabrata.
Assuntos
Antifúngicos , Candida glabrata , Candidíase , Caspofungina , Farmacorresistência Fúngica , Mutação , Esfingolipídeos , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/metabolismo , Caspofungina/farmacologia , Camundongos , Antifúngicos/farmacologia , Animais , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Farmacorresistência Fúngica/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologia , HumanosRESUMO
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Assuntos
Antituberculosos , Modelos Animais de Doenças , Mycobacterium tuberculosis , Pirazinamida , Rifampina , Espectinomicina , Animais , Camundongos , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Rifampina/uso terapêutico , Espectinomicina/farmacologia , Espectinomicina/uso terapêutico , Pirazinamida/uso terapêutico , Pirazinamida/farmacologia , Feminino , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Quimioterapia CombinadaRESUMO
TBI-223, a novel oxazolidinone for tuberculosis, is designed to provide improved efficacy and safety compared to linezolid in combination with bedaquiline and pretomanid (BPaL). We aim to optimize the dosing of TBI-223 within the BPaL regimen for enhanced therapeutic outcomes. TBI-223 is investigated in preclinical monotherapy, multidrug therapy, and lesion penetration experiments to describe its efficacy and safety versus linezolid. A translational platform incorporating linezolid and BPaL data from preclinical experiments and 4 clinical trials (NCT00396084, NCT02333799, NCT03086486, NCT00816426) is developed, enabling validation of the framework. TBI-223 preclinical and Phase 1 data (NCT03758612) are applied to the translational framework to predict clinical outcomes and optimize TBI-223 dosing in combination with bedaquiline and pretomanid. Results indicate that daily doses of 1200-2400 mg TBI-223 may achieve efficacy comparable to the BPaL regimen, with >90% of patients predicted to reach culture conversion by two months.
Assuntos
Antituberculosos , Diarilquinolinas , Linezolida , Oxazolidinonas , Linezolida/administração & dosagem , Linezolida/uso terapêutico , Humanos , Antituberculosos/administração & dosagem , Antituberculosos/uso terapêutico , Oxazolidinonas/administração & dosagem , Oxazolidinonas/uso terapêutico , Diarilquinolinas/administração & dosagem , Diarilquinolinas/uso terapêutico , Animais , Feminino , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Quimioterapia Combinada , Adulto , Tuberculose/tratamento farmacológico , Resultado do Tratamento , Pessoa de Meia-Idade , Camundongos , Relação Dose-Resposta a Droga , NitroimidazóisRESUMO
Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide 1810 has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of 1810, an injectable prodrug strategy was explored. The injectable phosphate prodrug 3408 has a superior maximum tolerated dose compared to 1810 or Gentamicin. Following intravenous administration in rodents, prodrug 3408 was quickly converted to 1810. The resulting 1810 exposure and pharmacokinetic profile after 3408 administration was identical to equivalent molar amounts of 1810 given directly by intravenous administration. 3408 and the parent 1810 exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of 1810 in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.
Assuntos
Antituberculosos , Camundongos Endogâmicos BALB C , Pró-Fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Animais , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/farmacocinética , Camundongos , Ratos , Testes de Sensibilidade Microbiana , Espectinomicina/farmacologia , Espectinomicina/síntese química , Espectinomicina/química , Fosfatos/química , Fosfatos/farmacologia , Fosfatos/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-AtividadeRESUMO
Conditions affecting the brain are the second leading cause of death globally. One of the main challenges for drugs targeting brain diseases is passing the blood-brain barrier (BBB). Here, the effectiveness of mesoporous silica nanostars (MSiNSs) with two different spike lengths to cross an in vitro BBB multicellular model was evaluated and compared to spherical nanoparticles (MSiNP). A modified sol-gel single-micelle epitaxial growth was used to produce MSiNS, which showed no cytotoxicity or immunogenicity at concentrations of up to 1 µg mL-1 in peripheral blood mononuclear and neuronal cells. The nanostar MSiNS effectively penetrated the BBB model after 24 h, and MSiNS-1 with a shorter spike length (9 ± 2 nm) crossed the in vitro BBB model more rapidly than the MSiNS-2 with longer spikes (18 ± 4 nm) or spherical MSiNP at 96 h, which accumulated in the apical and basolateral sides, respectively. Molecular dynamic simulations illustrated an increase in configurational flexibility of the lipid bilayer during contact with the MSiNS, resulting in wrapping, whereas the MSiNP suppressed membrane fluctuations. This work advances an effective brain drug delivery system based on virus-like shaped MSiNS for the treatment of different brain diseases and a mechanism for their interaction with lipid bilayers.
Assuntos
Barreira Hematoencefálica , Dióxido de Silício , Dióxido de Silício/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Porosidade , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Simulação de Dinâmica Molecular , Portadores de Fármacos/química , Transporte Biológico , Animais , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismoRESUMO
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).
Assuntos
Antivirais , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , COVID-19/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologiaRESUMO
Tuberculous meningitis (TBM) has a high mortality, possibly due to suboptimal therapy. Drug exposure data of antituberculosis agents in the central nervous system (CNS) are required to develop more effective regimens. Rifabutin is a rifamycin equivalently potent to rifampin in human pulmonary tuberculosis. Here, we show that human-equivalent doses of rifabutin achieved potentially therapeutic exposure in relevant CNS tissues in a rabbit model of TBM, supporting further evaluation in clinical trials.
Assuntos
Modelos Animais de Doenças , Rifabutina , Tuberculose Meníngea , Animais , Coelhos , Rifabutina/uso terapêutico , Rifabutina/farmacologia , Tuberculose Meníngea/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Rifampina/uso terapêutico , Rifampina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibióticos Antituberculose/uso terapêutico , Antibióticos Antituberculose/farmacologiaRESUMO
Skeletal muscle contraction evokes numerous biochemical alterations that underpin exercise benefits. This present study aimed to elucidate the mechanism for electrical pulse stimulation (EPS)-induced antioxidant adaptation in C2C12 myotubes. We found that EPS significantly upregulated Nrf2 and a broad array of downstream antioxidant enzymes involved in multiple antioxidant systems. These effects were completely abolished by pretreatment with a ROS scavenger, N-acetylcysteine. MitoSOX-Red, CM-H2DCFDA, and EPR spectroscopy revealed a significantly higher ROS level in mitochondria and cytosol in EPS cells compared to non-stimulated cells. Seahorse and Oroboros revealed that EPS significantly increased the maximal mitochondrial oxygen consumption rate, along with an upregulated protein expression of mitochondrial complexes I/V, mitofusin-1, and mitochondrial fission factor. A post-stimulation time-course experiment demonstrated that upregulated NQO1 and GSTA2 last at least 24 h following the cessation of EPS, whereas elevated ROS declines immediately. These findings suggest an antioxidant preconditioning effect in the EPS cells. A cell viability study suggested that the EPS cells displayed 11- and 36-fold higher survival rates compared to the control cells in response to 2 and 4 mM H2O2 treatment, respectively. In summary, we found that EPS upregulated a large group of antioxidant enzymes in C2C12 myotubes via a contraction-mitochondrial-ROS-Nrf2 pathway. This antioxidant adaptation protects cells against oxidative stress-associated cytotoxicity.
RESUMO
Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Monócitos , Transdução de Sinais , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Monócitos/metabolismo , Monócitos/patologia , Metástase Neoplásica , Fator de Crescimento Transformador beta1/metabolismoRESUMO
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
RESUMO
DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.
Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Policetídeo Sintases , Bibliotecas de Moléculas Pequenas , Tioléster Hidrolases , Animais , Humanos , Camundongos , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of actionâlinezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.
Assuntos
Antituberculosos , Mycobacterium tuberculosis , Oxazolidinonas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Animais , Testes de Sensibilidade Microbiana , Camundongos , Humanos , Linezolida/farmacologia , Linezolida/química , Farmacorresistência Bacteriana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismoRESUMO
Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.
Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Coelhos , Bevacizumab/farmacologia , Losartan/farmacologia , Tuberculose/microbiologia , Antituberculosos/farmacologia , Granuloma , Tuberculose Latente/microbiologiaRESUMO
Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.
Assuntos
Microbioma Gastrointestinal , Microbiota , Resiliência Psicológica , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genéticaRESUMO
Hospital-acquired infections, caused by ESKAPE bacteria, are a challenging global public health concern, in part due to the emergence of drug-resistant strains. While profiling a diverse set of compounds for in vitro activity versus this class of bacteria, we noted that the benzothiophene JSF-2827 exhibited promising antibacterial activity against Enterococcus faecium. A hit evolution campaign ensued, involving the design, synthesis, and biological assay of analogues designed to address early issues such as a short mouse liver microsome half-life and a modest mouse pharmacokinetic profile. Among these derivatives, JSF-3269 was found to exhibit an enhanced profile and in vivo efficacy in an immunocompetent mouse model of acute, drug-resistant E. faecium infection. The findings suggest a rationale for the further evolution of this promising series to afford a novel therapeutic strategy to treat drug-resistant E. faecium infection.
Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologiaRESUMO
Even in the modern era of combination antiretroviral therapy, aberrations in motor control remain a predominant symptom contributing to age-related functional dependencies (e.g., neurocognitive impairment) in people with HIV (PWH). While recent evidence implicates aberrant mitochondrial redox environments in the modulation of neural oscillatory activity serving motor control in PWH, the contribution of important clinical and demographic factors on this bioenergetic-neural-behavioral pathway is unknown. Herein, we evaluate the predictive capacity of clinical metrics pertinent to HIV (e.g., CD4 nadir, time with viremia) and age on mitochondrial redox-regulated sensorimotor brain-behavior dynamics in 69 virally-suppressed PWH. We used state-of-the-art systems biology and neuroscience approaches, including Seahorse analyzer of mitochondrial energetics, EPR spectroscopy of intracellular oxidant levels, antioxidant activity assays pertinent to superoxide and hydrogen peroxide (H2O2) redox environments, and magnetoencephalographic (MEG) imaging to quantify sensorimotor oscillatory dynamics. Our results demonstrate differential effects of redox systems on the neural dynamics serving motor function in PWH. In addition, measures of immune stability and duration of compromise due to HIV had dissociable effects on this pathway, above and beyond the effects of age alone. Moreover, peripheral measures of antioxidant activity (i.e., superoxide dismutase) fully mediated the relationship between immune stability and current behavioral performance, indicative of persistent oxidative environments serving motor control in the presence of virologic suppression. Taken together, our data suggest that disease-related factors, in particular, are stronger predictors of current redox, neural and behavioral profiles serving motor function, which may serve as effective targets for alleviating HIV-specific alterations in cognitive-motor function in the future.
Assuntos
Antioxidantes , Infecções por HIV , Humanos , Peróxido de Hidrogênio , Infecções por HIV/tratamento farmacológico , Oxirredução , BiomarcadoresRESUMO
Human challenge experiments could greatly accelerate the development of a tuberculosis (TB) vaccine. Human challenge for tuberculosis requires a strain that can both replicate in the host and be reliably cleared. To accomplish this, we designed Mycobacterium tuberculosis (Mtb) strains featuring up to three orthogonal kill switches, tightly regulated by exogenous tetracyclines and trimethoprim. The resultant strains displayed immunogenicity and antibiotic susceptibility similar to wild-type Mtb under permissive conditions. In the absence of supplementary exogenous compounds, the strains were rapidly killed in axenic culture, mice and nonhuman primates. Notably, the strain that contained three kill switches had an escape rate of less than 10 -10 per genome per generation and displayed no relapse in a SCID mouse model. Collectively, these findings suggest that this engineered Mtb strain could be a safe and effective candidate for a human challenge model.
RESUMO
Most coagulase-negative staphylococcal species, including the opportunistic pathogen Staphylococcus epidermidis, struggle to maintain redox homeostasis and grow under nitrosative stress. Under these conditions, growth can only resume once nitric oxide (NO) is detoxified by the flavohemoglobin Hmp. Paradoxically, S. epidermidis produces endogenous NO through its genetically encoded nitric oxide synthase (seNOS) and heavily relies on its activity for growth. In this study, we investigate the basis of the growth advantage attributed to seNOS activity. Our findings reveal that seNOS supports growth by countering Hmp toxicity. S. epidermidis relies on Hmp activity for its survival in the host under NO stress. However, in the absence of nitrosative stress, Hmp generates significant amounts of the harmful superoxide radical (O2â¢-) from its heme prosthetic group which impedes growth. To limit Hmp toxicity, nitrite (NO2-) derived from seNOS promotes CymR-CysK regulatory complex activity, which typically regulates cysteine metabolism, but we now demonstrate to also repress hmp transcription. These findings reveal a critical mechanism through which the bacterial NOS-Hmp axis drives staphylococcal fitness.
Assuntos
Proteínas de Bactérias , Estresse Oxidativo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Óxido Nítrico/metabolismoRESUMO
BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.