Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5429-5435, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682885

RESUMO

Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions. The new WIS electrolyte exhibits an electrochemical stability window of 2.47 V (2.08-4.55 V vs Li+/Li) with a room-temperature ionic conductivity of 30.6 mS/cm and a fluoride-ion transference number of 0.479, enabling reversible (de)fluoridation redox of lead and copper fluoride electrodes. The relationship between the salt property, the solvation structure, and the ionic transport behavior is jointly revealed by computational simulations and spectroscopic analysis.

2.
Angew Chem Int Ed Engl ; 63(14): e202319427, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38355900

RESUMO

Solid polymer electrolytes based on plastic crystals are promising for solid-state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0-electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0 batteries is associated with the formation of a thick and non-uniform solid electrolyte interphase (SEI) and whiskery Na0 nucleation/growth. Furthermore, we design a new additive-embedded plasticized polymer electrolyte to manipulate the Na0 deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile-plasticized polymer electrolyte can effectively protect Na0 against interfacial corrosion by facilitating the growth of dome-like Na0 with thin, amorphous, and fluorine-rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm-2) and Na//Na3V2(PO4)3 full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

3.
Nat Commun ; 14(1): 6019, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758731

RESUMO

The oxygen evolution reaction is known to be a kinetic bottleneck for water splitting. Triggering the lattice oxygen oxidation mechanism (LOM) can break the theoretical limit of the conventional adsorbate evolution mechanism and enhance the oxygen evolution reaction kinetics, yet the unsatisfied stability remains a grand challenge. Here, we report a high-entropy MnFeCoNiCu layered double hydroxide decorated with Au single atoms and O vacancies (AuSA-MnFeCoNiCu LDH), which not only displays a low overpotential of 213 mV at 10 mA cm-2 and high mass activity of 732.925 A g-1 at 250 mV overpotential in 1.0 M KOH, but also delivers good stability with 700 h of continuous operation at ~100 mA cm-2. Combining the advanced spectroscopic techniques and density functional theory calculations, it is demonstrated that the synergistic interaction between the incorporated Au single atoms and O vacancies leads to an upshift in the O 2p band and weakens the metal-O bond, thus triggering the LOM, reducing the energy barrier, and boosting the intrinsic activity.

4.
Nano Lett ; 23(17): 8272-8279, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643420

RESUMO

Phase transformation─a universal phenomenon in materials─plays a key role in determining their properties. Resolving complex phase domains in materials is critical to fostering a new fundamental understanding that facilitates new material development. So far, although conventional classification strategies such as order-parameter methods have been developed to distinguish remarkably disparate phases, highly accurate and efficient phase segmentation for material systems composed of multiphases remains unavailable. Here, by coupling hard-attention-enhanced U-Net network and geometry simulation with atomic-resolution transmission electron microscopy, we successfully developed a deep-learning tool enabling automated atom-by-atom phase segmentation of intertwined phase domains in technologically important cathode materials for lithium-ion batteries. The new strategy outperforms traditional methods and quantitatively elucidates the correlation between the multiple phases formed during battery operation. Our work demonstrates how deep learning can be employed to foster an in-depth understanding of phase transformation-related key issues in complex materials.

5.
Angew Chem Int Ed Engl ; 62(38): e202308309, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548104

RESUMO

Single Li+ ion conducting polyelectrolytes (SICs), which feature covalently tethered counter-anions along their backbone, have the potential to mitigate dendrite formation by reducing concentration polarization and preventing salt depletion. However, due to their low ionic conductivity and complicated synthetic procedure, the successful validation of these claimed advantages in lithium metal (Li0 ) anode batteries remains limited. In this study, we fabricated a SIC electrolyte using a single-step UV polymerization approach. The resulting electrolyte exhibited a high Li+ transference number (t+ ) of 0.85 and demonstrated good Li+ conductivity (6.3×10-5  S/cm at room temperature), which is comparable to that of a benchmark dual ion conductor (DIC, 9.1×10-5  S/cm). Benefitting from the high transference number of SIC, it displayed a three-fold higher critical current density (2.4 mA/cm2 ) compared to DIC (0.8 mA/cm2 ) by successfully suppressing concentration polarization-induced short-circuiting. Additionally, the t+ significantly influenced the deposition behavior of Li0 , with SIC yielding a uniform, compact, and mosaic-like morphology, while the low t+ DIC resulted in a porous morphology with Li0 whiskers. Using the SIC electrolyte, Li0 ||LiFePO4 cells exhibited stable operation for 4500 cycles with 70.5 % capacity retention at 22 °C.

7.
Angew Chem Int Ed Engl ; 62(28): e202304628, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37139583

RESUMO

Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn-Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long-cycle reliability. Here we report a zero-strain P2- Na2/3 Li1/6 Co1/6 Mn2/3 O2 cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+ /Mn4+ redox, mitigating the Jahn-Teller distortion, and minimizing the lattice change. 94.5 % of Na+ in the unit structure can be reversibly cycled with a charge cut-off voltage of 4.5 V (vs. Na+ /Na). Impressively, a solid-solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g-1 , a high energy density of 534 Wh kg-1 , and excellent capacity retention of 95.8 % at 1 C after 250 cycles.

8.
Small ; 19(33): e2301247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086132

RESUMO

Producing hydrogen via electrochemical water splitting with minimum environmental harm can help resolve the energy crisis in a sustainable way. Here, this work fabricates the pure nickel nanopyramid arrays (NNAs) with dense high-index crystalline steps as the cata electrode via a screw dislocation-dominated growth kinetic for long-term durable and large current density hydrogen evolution reaction. Such a monolithic NNAs electrode offers an ultralow overpotential of 469 mV at a current density of 5000 mA cm-2 in 1.0 m KOH electrolyte and shows a high stability up to 7000 h at a current density of 1000 mA cm-2 , which outperforms the reported catas and even the commercial platinum cata for long-term services under high current densities. Its unique structure can substantially stabilize the high-density surface crystalline steps on the catalytic electrode, which significantly elevates the catalytic activity and durability of nickel in an alkaline medium. In a typical commercial hydrogen gas generator, the total energy conversion rate of NNAs reaches 84.5% of that of a commercial Pt/Ti cata during a 60-day test of hydrogen production. This work approach can provide insights into the development of industry-compatible long-term durable, and high-performance non-noble metal catas for various applications.

9.
Adv Mater ; 35(7): e2209091, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36413142

RESUMO

Designing stable Li metal and supporting solid structures (SSS) is of fundamental importance in rechargeable Li-metal batteries. Yet, the stripping kinetics of Li metal and its mechanical effect on the supporting solids (including solid electrolyte interface) remain mysterious to date. Here, through nanoscale in situ observations of a solid-state Li-metal battery in an electron microscope, two distinct cavitation-mediated Li stripping modes controlled by the ratio of the SSS thickness (t) to the Li deposit's radius (r) are discovered. A quantitative criterion is established to understand the damage tolerance of SSS on the Li-metal stripping pathways. For mechanically unstable SSS (t/r < 0.21), the stripping proceeds via tension-induced multisite cavitation accompanied by severe SSS buckling and necking, ultimately leading to Li "trapping" or "dead Li" formation; for mechanically stable SSS (t/r > 0.21), the Li metal undergoes nearly planar stripping from the root via single cavitation, showing negligible buckling. This work proves the existence of an electronically conductive precursor film coated on the interior of solid electrolytes that however can be mechanically damaged, and it is of potential importance to the design of delicate Li-metal supporting structures to high-performance solid-state Li-metal batteries.

10.
Nano Lett ; 22(18): 7535-7544, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36070490

RESUMO

The rechargeability of aqueous zinc metal batteries is plagued by parasitic reactions of the zinc metal anode and detrimental morphologies such as dendritic or dead zinc. To improve the zinc metal reversibility, hereby we report a new solution structure of aqueous electrolyte with hydroxyl-ion scavengers and hydrophobicity localized in solvent clusters. We show that although hydrophobicity sounds counterintuitive for an aqueous system, hydrophilic pockets may be encapsulated inside a hydrophobic outer layer, and a hydrophobic anode-electrolyte interface can be generated through the addition of a cation-philic, strongly anion-phobic, and OH--reactive diluent. The localized hydrophobicity enables less active water and less absorbed water on the Zn anode surface, which suppresses the parasitic water reduction; while the hydroxyl-ion-scavenging functionality further minimizes undesired passivation layer formation, thus leading to superior reversibility (an average Zn plating/stripping efficiency of 99.72% for 1000 cycles) and lifetime (80.6% capacity retention after 5000 cycles) of zinc batteries.


Assuntos
Eletrólitos , Zinco , Ânions , Cátions , Interações Hidrofóbicas e Hidrofílicas , Solventes , Água
11.
Nature ; 610(7930): 67-73, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131017

RESUMO

The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

12.
Small ; 18(37): e2203663, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35980943

RESUMO

Poor stability of nanostructured electrocatalysts at rigorous industrial conditions significantly inhibits their performances in practical electrolyzers. Although many substrate-supported nanostructured electrocatalysts present attractive performance at small currents, they cannot sustain industry-level high current densities for long-term operation. Herein, by chemically organizing nanoscale electrocatalysts into a macroscopic substrate-free metallic alloy aerogel, this NiFe-based nano-catalyst achieves 1000-h durability at industrial-level current densities, with exceptionally high activities of 500 mA at the overpotential of only 281 mV. This NiFe alloy aerogel is constructed by a magnetic-field assisted growth and assembly of ferromagnetic NiFe nanoparticles, in which nanowires are loosely crosslinked by metallic joints. This alloy aerogel shows a high electric conductivity of 500 S m-1 , structural stability for more than 1.5 years in alkaline electrolyte, and almost complete recovery after compression exceeding 50% strain for 1000 cycles. The excellent mechanical stability of this metallic aerogel behaves as the key contributor to the superior electrocatalytic stability under industrially relevant conditions. This work offers a paradigm for electrode design for the practical application of nano-catalysts in industrial alkaline water electrolysis.

14.
Nat Nanotechnol ; 17(7): 768-776, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773425

RESUMO

Solid-state lithium-metal (Li0) batteries are gaining traction for electric vehicle applications because they replace flammable liquid electrolytes with a safer, solid-form electrolyte that also offers higher energy density and better resistance against Li dendrite formation. Solid polymer electrolytes (SPEs) are highly promising candidates because of their tuneable mechanical properties and easy manufacturability; however, their electrochemical instability against lithium-metal (Li0), mediocre conductivity and poorly understood Li0/SPE interphases have prevented extensive application in real batteries. In particular, the origin of the low Coulombic efficiency (CE) associated with SPEs remains elusive, as the debate continues as to whether it originates from unfavoured interfacial reactions or lithium dendritic growth and dead lithium formation. In this work, we use state-of-the-art cryo-EM imaging and spectroscopic techniques to characterize the structure and chemistry of the interface between Li0 and a polyacrylate-based SPE. Contradicting the conventional knowledge, we find that no protective interphase forms, owing to the sustained reactions between deposited Li dendrites and polyacrylic backbones and succinonitrile plasticizer. Due to the reaction-induced volume change, large amounts of cracks form inside the Li dendrites with a stress-corrosion-cracking behaviour, indicating that Li0 cannot be passivated in this SPE system. On the basis of this observation, we then introduce additive engineering, leveraging from knowledge of liquid electrolytes, and demonstrate that the Li0 surface can be effectively protected against corrosion using fluoroethylene carbonate, leading to densely packed Li0 domes with conformal and stable solid-electrolyte interphase films. Owing to the high room-temperature ionic conductivity of 1.01 mS cm-1, the high transference number of 0.57 and the stabilized lithium-electrolyte interface, this improved SPE delivers an excellent lithium plating/stripping CE of 99% and 1,800 hours of stable cycling in Li||Li symmetric cells (0.2 mA cm-2, 1 mAh cm-2). This improved cathodic stability, along with the high anodic stability, enables a record high cycle life of >2,000 cycles for Li||LiFePO4 and >400 cycles for Li||LiCoO2 full cells.


Assuntos
Eletrólitos , Lítio , Microscopia Crioeletrônica
15.
J Am Chem Soc ; 144(5): 2197-2207, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089019

RESUMO

Single-atom catalysts based on metal-N4 moieties and anchored on carbon supports (defined as M-N-C) are promising for oxygen reduction reaction (ORR). Among those, M-N-C catalysts with 4d and 5d transition metal (TM4d,5d) centers are much more durable and not susceptible to the undesirable Fenton reaction, especially compared with 3d transition metal based ones. However, the ORR activity of these TM4d,5d-N-C catalysts is still far from satisfactory; thus far, there are few discussions about how to accurately tune the ligand fields of single-atom TM4d,5d sites in order to improve their catalytic properties. Herein, we leverage single-atom Ru-N-C as a model system and report an S-anion coordination strategy to modulate the catalyst's structure and ORR performance. The S anions are identified to bond with N atoms in the second coordination shell of Ru centers, which allows us to manipulate the electronic configuration of central Ru sites. The S-anion-coordinated Ru-N-C catalyst delivers not only promising ORR activity but also outstanding long-term durability, superior to those of commercial Pt/C and most of the near-term single-atom catalysts. DFT calculations reveal that the high ORR activity is attributed to the lower adsorption energy of ORR intermediates at Ru sites. Metal-air batteries using this catalyst in the cathode side also exhibit fast kinetics and excellent stability.

16.
ACS Appl Mater Interfaces ; 13(50): 60092-60098, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878239

RESUMO

Aqueous zinc batteries are of great interest as a rechargeable energy storage system, particularly owing to the low cost and high safety of aqueous electrolytes, as well as the high capacity of zinc anodes. Unfortunately, the wide commercialization of aqueous zinc batteries is impeded by the irreversible water reduction and irregular zinc evolution issues on the anode side. Hereby, a hydrophobic and ultrathin polystyrene molecule brush layer is tethered onto the surface of zinc metal anodes to tackle the above limitations. Experimental investigations reveal that the waterproof artificial layer can sustain fast interfacial ionic transportation, minimize hydrogen evolution, and smoothen Zn deposition, thus conferring enhanced electrochemical performance to the as-protected Zn anode in both symmetric Zn//Zn cells and Zn//LiV3O8 full cells.

17.
Chem Rev ; 121(10): 5986-6056, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33861070

RESUMO

Lithium (Li) metal, a typical alkaline metal, has been hailed as the "holy grail" anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, "dead Li" accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields' distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.

18.
ACS Appl Mater Interfaces ; 13(17): 20024-20033, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900745

RESUMO

Exploring electrocatalysts with satisfactory activity and durability has remained a long-lasting target for electrolyzing water, which is particularly significant for sustainable hydrogen fuel production. Here, we report a quaternary B/P-codoped transition metal Co-Mo hybrid as an efficient alternative catalyst for overall water splitting. The Co-Mo-B-P/CF dual nanowafers were deposited on a copper foam by double-pulse electrodeposition, which is favorable for achieving a nanocrystalline structure. The Co-Mo-B-P/CF catalyst shows a high catalytic activity along with good long-term stability in 1.0 M KOH solutions for both the hydrogen and oxygen evolution reactions, requiring 48 and 275 mV to reach 10 mA cm-2, respectively. The synergetic effect between Co-Mo and doped B and P elements is mainly attributed to the excellent bifunctional catalysis performance, while the dual-nanowafer structure endows Co-Mo-B-P with numerous catalytical active sites enhancing the utilization efficiency of atoms. Moreover, the catalytic capability of Co-Mo-B-P/CF as a bifunctional electrocatalyst for the overall water splitting is proved, with the current density of 10 mA cm-2 accomplished at 1.59 V. After the stability test for overall water splitting at 1.59 V for 24 h, the activity almost remains unchanged. The features of excellent electrocatalytic activity, simple preparation, and inexpensive raw materials for Co-Mo-B-P/CF as a bifunctional catalyst hold great potentials for overall water splitting.

19.
Adv Mater ; 33(9): e2007377, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511663

RESUMO

The slow kinetics of oxygen evolution reaction (OER) causes high power consumption for electrochemical water splitting. Various strategies have been attempted to accelerate the OER rate, but there are few studies on regulating the transport of reactants especially under large current densities when the mass transfer factor dominates the evolution reactions. Herein, Nix Fe1- x alloy nanocones arrays (with ≈2 nm surface NiO/NiFe(OH)2 layer) are adopted to boost the transport of reactants. Finite element analysis suggests that the high-curvature tips can enhance the local electric field, which induces an order of magnitude higher concentration of hydroxide ions (OH- ) at the active sites and promotes intrinsic OER activity by 67% at 1.5 V. Experimental results show that a fabricated NiFe nanocone array electrode, with optimized alloy composition, has a small overpotential of 190 mV at 10 mA cm-2 and 255 mV at 500 mA cm-2 . When calibrated by electrochemical surface area, the nanocones electrode outperforms the state-of-the-art OER electrocatalysts. The positive effect of the tip-enhanced local electric field in promoting mass transfer is also confirmed by comparing samples with different tip curvature radii. It is suggested that this local field enhanced OER kinetics is a generic effect to other OER catalysts.

20.
Small ; 16(40): e2003815, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875749

RESUMO

Metallic sodium (Na) is an appealing anode material for high-energy Na batteries. However, Na metal suffers from low coulombic efficiencies and severe dendrite growth during plating/stripping cycles, causing short circuits. As an effective strategy to improve the deposition behavior of Na metal, a 3D carbon foam is developed that is sputter-coated with gold nanoparticles (Au/CF), forming a functional gradient through its thickness. The highly porous Au/CF host is proven to have gradually varying sodiophilicity, which in turn facilitates initially preferential Na deposition on the gold-rich, sodiophilic region in a "bottom-up growth" mode, leading to uniform plating over the entire Au/CF host. This finding contrasts with dendrite formation in the pristine CF host, as proven by in situ microscopy. The Na-predeposited Au/CF (Na@Au/CF) composite anode operates steadily for 1000 h at a low overpotential of ≈20 mV at 2 mA cm-2 in a symmetric cell. When the composite anode is coupled with a Na3 V2 (PO4 )2 F3 cathode, the full cell has a high capacity of 102.1 mAh g-1 after 500 cycles at 2 C. The sodiophilicity gradient design that is explored in this study offers new insight into developing porous Na metal hosts with highly stable plating/stripping performance for next-generation Na batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...