Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadl4005, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536931

RESUMO

Estimating river flood risks under climate change is challenging, largely due to the interacting and combined influences of various flood-generating drivers. However, a more detailed quantitative analysis of such compounding effects and the implications of their interplay remains underexplored on a large scale. Here, we use explainable machine learning to disentangle compounding effects between drivers and quantify their importance for different flood magnitudes across thousands of catchments worldwide. Our findings demonstrate the ubiquity of compounding effects in many floods. Their importance often increases with flood magnitude, but the strength of this increase varies on the basis of catchment conditions. Traditional flood analysis might underestimate extreme flood hazards in catchments where the contribution of compounding effects strongly varies with flood magnitude. Overall, our study highlights the need to carefully incorporate compounding effects in flood risk assessment to improve estimates of extreme floods.

2.
Sci Total Environ ; 912: 169120, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070558

RESUMO

Multi-hazard events, characterized by the simultaneous, cascading, or cumulative occurrence of multiple natural hazards, pose a significant threat to human lives and assets. This is primarily due to the cumulative and cascading effects arising from the interplay of various natural hazards across space and time. However, their identification is challenging, which is attributable to the complex nature of natural hazard interactions and the limited availability of multi-hazard observations. This study presents an approach for identifying multi-hazard events during the past 123 years (1900-2023) using the EM-DAT global disaster database. Leveraging the 'associated hazard' information in EM-DAT, multi-hazard events are detected and assessed in relation to their frequency, impact on human lives and assets, and reporting trends. The interactions between various combinations of natural hazard pairs are explored, reclassifying them into four categories: preconditioned/triggering, multivariate, temporally compounding, and spatially compounding multi-hazard events. The results show, globally, approximately 19 % of the 16,535 disasters recorded in EM-DAT can be classified as multi-hazard events. However, the multi-hazard events recorded in EM-DAT are disproportionately responsible for nearly 59 % of the estimated global economic losses. Conversely, single hazard events resulted in higher fatalities compared to multi-hazard events. The largest proportion of multi-hazard events are associated with floods, storms, and earthquakes. Landslides emerge as the predominant secondary hazards within multi-hazard pairs, primarily triggered by floods, storms, and earthquakes, with the majority of multi-hazard events exhibiting preconditioned/triggering and multivariate characteristics. There is a higher prevalence of multi-hazard events in Asia and North America, whilst temporal overlaps of multiple hazards predominate in Europe. These results can be used to increase the integration of multi-hazard thinking in risk assessments, emergency management response plans and mitigation policies at both national and international levels.

3.
Int J Climatol ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874919

RESUMO

Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.

4.
Glob Chang Biol ; 29(23): 6478-6492, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815723

RESUMO

Ocean extreme events, such as marine heatwaves, can have harmful impacts on marine ecosystems. Understanding the risks posed by such extreme events is key to develop strategies to predict and mitigate their effects. However, the underlying ocean conditions driving severe impacts on marine ecosystems are complex and often unknown as risks to marine ecosystems arise not only from hazards but also from the interactions between hazards, exposure and vulnerability. Marine ecosystems may not be impacted by extreme events in single drivers but rather by the compounding effects of moderate ocean anomalies. Here, we employ an ensemble climate-impact modeling approach that combines a global marine fish model with output from a large ensemble simulation of an Earth system model, to identify the key ocean ecosystem drivers associated with the most severe impacts on the total biomass of 326 pelagic fish species. We show that low net primary productivity is the most influential driver of extremely low fish biomass over 68% of the ocean area considered by the model, especially in the subtropics and the mid-latitudes, followed by high temperature and low oxygen in the eastern equatorial Pacific and the high latitudes. Severe biomass loss is generally driven by extreme anomalies in at least one ocean ecosystem driver, except in the tropics, where a combination of moderate ocean anomalies is sufficient to drive extreme impacts. Single moderate anomalies never drive extremely low fish biomass. Compound events with either moderate or extreme ocean conditions are a necessary condition for extremely low fish biomass over 78% of the global ocean, and compound events with at least one extreme variable are a necessary condition over 61% of the global ocean. Overall, our model results highlight the crucial role of extreme and compound events in driving severe impacts on pelagic marine ecosystems.


Assuntos
Ecossistema , Peixes , Animais , Biomassa , Clima , Mudança Climática , Oceanos e Mares
5.
Nat Commun ; 14(1): 3197, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268612

RESUMO

Increasing atmospheric moisture content is expected to intensify precipitation extremes under climate warming. However, extreme precipitation sensitivity (EPS) to temperature is complicated by the presence of reduced or hook-shaped scaling, and the underlying physical mechanisms remain unclear. Here, by using atmospheric reanalysis and climate model projections, we propose a physical decomposition of EPS into thermodynamic and dynamic components (i.e., the effects of atmospheric moisture and vertical ascent velocity) at a global scale in both historical and future climates. Unlike previous expectations, we find that thermodynamics do not always contribute to precipitation intensification, with the lapse rate effect and the pressure component partly offsetting positive EPS. Large anomalies in future EPS projections (with lower and upper quartiles of -1.9%/°C and 8.0%/°C) are caused by changes in updraft strength (i.e., the dynamic component), with a contrast of positive anomalies over oceans and negative anomalies over land areas. These findings reveal counteracting effects of atmospheric thermodynamics and dynamics on EPS, and underscore the importance of understanding precipitation extremes by decomposing thermodynamic effects into more detailed terms.

6.
Nat Food ; 4(5): 416-426, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142747

RESUMO

Extreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China. We find that rice yield reductions due to extreme rainfall were comparable to those induced by extreme heat over the last two decades, reaching 7.6 ± 0.9% (one standard error) according to nationwide observations and 8.1 ± 1.1% according to the crop model incorporating the mechanisms revealed from manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting nitrogen availability for tillering that lowers per-area effective panicles and by exerting physical disturbance on pollination that declines per-panicle filled grains. Considering these mechanisms, we projected ~8% additional yield reduction due to extreme rainfall under warmer climate by the end of the century. These findings demonstrate that it is critical to account for extreme rainfall in food security assessments.


Assuntos
Oryza , Clima , China , Produtos Agrícolas , Mudança Climática
7.
Natl Sci Rev ; 10(5): nwad049, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37064217

RESUMO

Identifying the thresholds of drought that, if crossed, suppress vegetation functioning is vital for accurate quantification of how land ecosystems respond to climate variability and change. We present a globally applicable framework to identify drought thresholds for vegetation responses to different levels of known soil-moisture deficits using four remotely sensed vegetation proxies spanning 2001-2018. The thresholds identified represent critical inflection points for changing vegetation responses from highly resistant to highly vulnerable in response to drought stress, and as a warning signal for substantial vegetation impacts. Drought thresholds varied geographically, with much lower percentiles of soil-moisture anomalies in vegetated areas covered by more forests, corresponding to a comparably stronger capacity to mitigate soil water deficit stress in forested ecosystems. Generally, those lower thresholds are detected in more humid climates. State-of-the-art land models, however, overestimated thresholds of soil moisture (i.e. overestimating drought impacts), especially in more humid areas with higher forest covers and arid areas with few forest covers. Based on climate model projections, we predict that the risk of vegetation damage will increase by the end of the twenty-first century in some hotspots like East Asia, Europe, Amazon, southern Australia and eastern and southern Africa. Our data-based results will inform projections on future drought impacts on terrestrial ecosystems and provide an effective tool for drought management.

8.
Nat Commun ; 14(1): 2145, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059735

RESUMO

Societally relevant weather impacts typically result from compound events, which are rare combinations of weather and climate drivers. Focussing on four event types arising from different combinations of climate variables across space and time, here we illustrate that robust analyses of compound events - such as frequency and uncertainty analysis under present-day and future conditions, event attribution to climate change, and exploration of low-probability-high-impact events - require data with very large sample size. In particular, the required sample is much larger than that needed for analyses of univariate extremes. We demonstrate that Single Model Initial-condition Large Ensemble (SMILE) simulations from multiple climate models, which provide hundreds to thousands of years of weather conditions, are crucial for advancing our assessments of compound events and constructing robust model projections. Combining SMILEs with an improved physical understanding of compound events will ultimately provide practitioners and stakeholders with the best available information on climate risks.

9.
iScience ; 26(3): 106030, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843856

RESUMO

Consideration of compound drivers and impacts are often missing from applications within the Disaster Risk Reduction (DRR) cycle, leading to poorer understanding of risk and benefits of actions. The need to include compound considerations is known, but lack of guidance is prohibiting practitioners from including these considerations. This article makes a step toward practitioner guidance by providing examples where consideration of compound drivers, hazards, and impacts may affect different application domains within disaster risk management. We discern five DRR categories and provide illustrative examples of studies that highlight the role of "compound thinking" in early warning, emergency response, infrastructure management, long-term planning, and capacity building. We conclude with a number of common elements that may contribute to the development of practical guidelines to develop appropriate applications for risk management.

10.
Glob Chang Biol ; 29(8): 2351-2362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630538

RESUMO

Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Árvores , Solo , Secas
11.
Nat Commun ; 14(1): 277, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650142

RESUMO

Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.


Assuntos
Secas , Ecossistema , Atmosfera , Mudança Climática , Solo
12.
Nat Clim Chang ; 12(2): 179-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35757518

RESUMO

Marine heatwaves (MHWs), episodic periods of abnormally high sea surface temperature (SST), severely affect marine ecosystems. Large Marine Ecosystems (LMEs) cover ~22% of the global ocean but account for 95% of global fisheries catches. Yet how climate change affects MHWs over LMEs remains unknown, because such LMEs are confined to the coast where low-resolution climate models are known to have biases. Here, using a high-resolution Earth system model and applying a "future threshold" that considers MHWs as anomalous warming above the long-term mean warming of SSTs, we find that future intensity and annual days of MHWs over majority of the LMEs remain higher than in the present-day climate. Better resolution of ocean mesoscale eddies enables simulation of more realistic MHWs than low-resolution models. These increases in MHWs under global warming poses a serious threat to LMEs, even if resident organisms could adapt fully to the long-term mean warming.

13.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691569

RESUMO

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

14.
Nat Food ; 2(9): 683-691, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37117467

RESUMO

Rising air temperatures are a leading risk to global crop production. Recent research has emphasized the critical role of moisture availability in regulating crop responses to heat and the importance of temperature-moisture couplings in driving concurrent heat and drought. Here, we demonstrate that the heat sensitivity of key global crops depends on the local strength of couplings between temperature and moisture in the climate system. Over 1970-2013, maize and soy yields dropped more during hotter growing seasons in places where decreased precipitation and evapotranspiration more strongly accompanied higher temperatures, suggestive of compound heat-drought impacts on crops. On the basis of this historical pattern and a suite of climate model projections, we show that changes in temperature-moisture couplings in response to warming could enhance the heat sensitivity of these crops as temperatures rise, worsening the impact of warming by -5% (-17 to 11% across climate models) on global average. However, these changes will benefit crops where couplings weaken, including much of Asia, and projected impacts are highly uncertain in some regions. Our results demonstrate that climate change will impact crops not only through warming but also through changing drivers of compound heat-moisture stresses, which may alter the sensitivity of crop yields to heat as warming proceeds. Robust adaptation of cropping systems will need to consider this underappreciated risk to food production from climate change.

16.
Nat Commun ; 11(1): 5956, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235203

RESUMO

Compound events (CEs) are weather and climate events that result from multiple hazards or drivers with the potential to cause severe socio-economic impacts. Compared with isolated hazards, the multiple hazards/drivers associated with CEs can lead to higher economic losses and death tolls. Here, we provide the first analysis of multiple multivariate CEs potentially causing high-impact floods, droughts, and fires. Using observations and reanalysis data during 1980-2014, we analyse 27 hazard pairs and provide the first spatial estimates of their occurrences on the global scale. We identify hotspots of multivariate CEs including many socio-economically important regions such as North America, Russia and western Europe. We analyse the relative importance of different multivariate CEs in six continental regions to highlight CEs posing the highest risk. Our results provide initial guidance to assess the regional risk of CE events and an observationally-based dataset to aid evaluation of climate models for simulating multivariate CEs.

17.
Science ; 369(6511): 1621-1625, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973027

RESUMO

Marine heatwaves (MHWs)-periods of extremely high ocean temperatures in specific regions-have occurred in all of Earth's ocean basins over the past two decades, with severe negative impacts on marine organisms and ecosystems. However, for most individual MHWs, it is unclear to what extent they have been altered by human-induced climate change. We show that the occurrence probabilities of the duration, intensity, and cumulative intensity of most documented, large, and impactful MHWs have increased more than 20-fold as a result of anthropogenic climate change. MHWs that occurred only once every hundreds to thousands of years in the preindustrial climate are projected to become decadal to centennial events under 1.5°C warming conditions and annual to decadal events under 3°C warming conditions. Thus, ambitious climate targets are indispensable to reduce the risks of substantial MHW impacts.


Assuntos
Aquecimento Global , Temperatura Alta , Atividades Humanas , Humanos , Oceanos e Mares
18.
Int J Biometeorol ; 64(10): 1729, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748042

RESUMO

The article was published bearing a typographical error to the second author name listed. The author group regret the error and the name should be referenced and credited as Jakob Zscheischler and not the former.

19.
Int J Biometeorol ; 64(10): 1709-1727, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32671669

RESUMO

Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future. Here, we present a new method for creating realistic climate forcing for manipulation experiments and apply it to the UHasselt Ecotron experiment. The new methodology uses data derived from the best available regional climate model projection and consists of generating climate forcing along a gradient representative of increasingly high global mean air temperature anomalies. We first identified the best-performing regional climate model simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European domain (EURO-CORDEX) ensemble based on two criteria: (i) highest skill compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. The time window is subsequently selected from the model projection for each ecotron unit based on the global mean air temperature of the driving global climate model. The ecotron units are forced with 3-hourly output from the projections of the 5-year period in which the global mean air temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The presented methodology can also be applied to other manipulation experiments, aiming at investigating ecosystem responses to realistic future climate change.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Temperatura , Tempo (Meteorologia)
20.
J Geophys Res Atmos ; 125(9): e2019JD032070, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32728502

RESUMO

In 2018 and 2019, heatwaves set all-time temperature records around the world and caused adverse effects on human health, agriculture, natural ecosystems, and infrastructure. Often, severe impacts relate to the joint spatial and temporal extent of the heatwaves, but most research so far focuses either on spatial or temporal attributes of heatwaves. Furthermore, sensitivity of heatwaves characteristics to the choice of the heatwave thresholds in a warming climate are rarely discussed. Here, we analyze the largest spatiotemporal moderate heatwaves-that is, three-dimensional (space-time) clusters of hot days-in simulations of global climate models. We use three different hazard thresholds to define a hot day: fixed thresholds (time-invariant climatological thresholds), seasonally moving thresholds based on changes in the summer means, and fully moving thresholds (hot days defined relative to the future climatology). We find a substantial increase of spatiotemporally contiguous moderate heatwaves with global warming using fixed thresholds, whereas changes for the other two hazard thresholds are much less pronounced. In particular, no or very little changes in the overall magnitude, spatial extent, and duration are detected when heatwaves are defined relative to the future climatology using a temporally fully moving threshold. This suggests a dominant contribution of thermodynamic compared to dynamic effects in global climate model simulations. The similarity between seasonally moving and fully moving thresholds indicates that seasonal mean warming alone can explain large parts of the warming of extremes. The strong sensitivity of simulated future heatwaves to hazard thresholds should be considered in the projections of potential future heat-related impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...