Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442777

RESUMO

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Feminino , Masculino , Ratos , Animais , Éter , Ratos Sprague-Dawley , Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Etil-Éteres , Neurotransmissores , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
2.
Molecules ; 28(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446652

RESUMO

ß-glucosidases (BGLs) play a crucial role in the degradation of lignocellulosic biomass as well as in industrial applications such as pharmaceuticals, foods, and flavors. However, the application of BGLs has been largely hindered by issues such as low enzyme activity, product inhibition, low stability, etc. Many approaches have been developed to engineer BGLs to improve these enzymatic characteristics to facilitate industrial production. In this article, we review the recent advances in BGL engineering in the field, including the efforts from our laboratory. We summarize and discuss the BGL engineering studies according to the targeted functions as well as the specific strategies used for BGL engineering.


Assuntos
beta-Glucosidase , beta-Glucosidase/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-36473636

RESUMO

TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of the main derivatives of TBBPA, has been widely detected in environmental samples and been discovered to be potential neurotoxic. In this study, the juvenile zebrafish were selected as the research subject to explore the neurotoxicity and its mechanism of low-dose TBBPA-DHEE exposure, and to reveal the neurotoxicity susceptibility in different sexes. Behavioral studies revealed that TBBPA-DHEE could significantly reduce the swimming velocity, maximum acceleration and cumulative duration of high-speed mobility, significantly increasing the cumulative duration of low-speed mobility and average social distance. It significantly reduced the contents of ATP, glutamate and Ca2+ in the whole brain. The histopathological study demonstrated that TBBPA-DHEE could cause brain tissue damage in female and male juvenile zebrafish. The comprehensive data analysis indicated that female zebrafish were more susceptible to TBBPA-DHEE exposure than male zebrafish. Transcriptomic analysis showed that TBBPA-DHEE could significantly affect the expressions of behavioral and development-related genes. Furthermore, female and male juvenile zebrafish have different molecular mechanisms of neurotoxicity. For female juvenile zebrafish, the potential mechanism of neurotoxicity could be that it interfered with the feedback regulation of nerves by affecting the related genes expressions in the signaling pathways such as Ca2+ signaling, Wnt signaling and synapses. For male juvenile zebrafish, the potential mechanism of neurotoxicity may be through affecting the expression of related genes in hormones and neuro-related genes. This research could reveal the potential neurotoxicity of TBBPA-DHEE to aquatic organisms, which will be helpful to reveal the health effects of the emerging environmental pollutants.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Feminino , Masculino , Peixe-Zebra/genética , Éter , Éteres/análise , Etil-Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Retardadores de Chama/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA