Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731386

RESUMO

The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/ß-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs. The results of this study demonstrate that the use of STO cells as feeder layers, along with the addition of FGF2, IWR-1, and XAV-939 (FIX), allows for the efficient derivation of chicken PSC-like cells. Under the FIX culture conditions, chicken PSCs express key pluripotency genes, such as POUV, SOX2, and NANOG, as well as specific proteins SSEA-1, C-KIT, and SOX2, indicating their pluripotent nature. Additionally, the embryoid body experiment confirms that these PSC-like cells can differentiate into cells of three germ layers in vitro, highlighting their potential for multilineage differentiation. Furthermore, this study reveals that chicken Eyal-Giladi and Kochav stage X blastodermal cells express genes related to the primed state of PSCs, and the FIX culture system established in this research maintains the expression of these genes in vitro. These findings contribute significantly to the understanding and optimization of chicken PSC culture conditions and provide a foundation for further exploration of the biomedical research and biotechnological applications of chicken PSCs.

2.
Mol Genet Genomics ; 299(1): 41, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551742

RESUMO

Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-ß signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.


Assuntos
Galinhas , RNA Longo não Codificante , Masculino , Animais , Feminino , Galinhas/genética , Galinhas/metabolismo , Histonas/genética , Histonas/metabolismo , RNA Longo não Codificante/metabolismo , Metilação , Células Germinativas
3.
Animals (Basel) ; 14(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254471

RESUMO

In recent years, inducing pluripotent stem cells to differentiate into functional primordial germ cells (PGCs) in vitro has become an important method of obtaining a large number of PGCs. However, the instability and low induction efficiency of the in vitro PGC induction system restrict the application of PGCs in transgenic animal production, germplasm resource conservation and other fields. In this study, we successfully established a two-step induction model of chicken PGCs in vitro, which significantly improved the formation efficiency of PGC-like cells (PGCLCs). To further improve the PGC formation efficiency in vitro, 5025 differentially expressed genes (DEGs) were obtained between embryonic stem cells (ESCs) and PGCs through RNA-seq. GO and KEGG enrichment analysis revealed that signaling pathways such as BMP4, Wnt and Notch were significantly activated during PGC formation, similar to other species. In addition, we noted that cAMP was activated during PGC formation, while MAPK was suppressed. Based on the results of our analysis, we found that the PGC formation efficiency was significantly improved after activating Wnt and inhibiting MAPK, and was lower than after activating cAMP. To sum up, in this study, we successfully established a two-step induction model of chicken PGCs in vitro with high PGC formation efficiency, which lays a theoretical foundation for further demonstrating the regulatory mechanism of PGCs and realizing their specific applications.

4.
Theriogenology ; 215: 67-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011785

RESUMO

Chicken primordial germ cells (PGCs) are important cells with significant implications in preserving genetic resources, chicken breeding and production, and basic research on genetics and development. Currently, chicken PGCs can be cultured long-term in vitro to produce single-cell clones. However, systematic exploration of the cellular characteristics of these single-cell clonal lines has yet to be conducted. In this study, single-cell clonal lines were established from male and female PGCs of Rugao Yellow Chicken and Shouguang Black Chicken, respectively, using a micropipette-based method for single-cell isolation and culture. Analysis of glycogen granule staining, mRNA expression of pluripotency marker genes (POUV, SOX2, NANOG), germ cell marker genes (DAZL, CVH), and SSEA-1, EMA-1, SOX2, C-KIT, and CVH protein expression showed positive results, indicating that PGCs maintain normal cellular properties after single-cell cloning. Furthermore, tests on proliferation ability and gene expression levels in PGC single-cell clonal lines showed high expression of the pluripotency-related genes and TERT compared to control PGCs, and PGC single-cell clonal lines demonstrated higher proliferation ability. Finally, green fluorescent protein (GFP)-PGC single-cell clonal lines were established, and it was found that these single-cell clonal lines could still migrate into the gonads of recipients, suggesting their potential for germ-line transmission. This study systematically validated the normal cellular characteristics of PGC single-cell clonal lines, indicating that they could be applied in genetic modification research on chickens.


Assuntos
Galinhas , Células Germinativas , Animais , Masculino , Feminino , Galinhas/genética , Linhagem Celular , Células Cultivadas , Células Germinativas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
5.
Genes (Basel) ; 14(10)2023 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895324

RESUMO

Primordial germ cells (PGCs) are essential for the genetic modification, resource conservation, and recovery of endangered breeds in chickens and need to remain viable and proliferative in vitro. Therefore, there is an urgent need to elucidate the functions of the influencing factors and their regulatory mechanisms. In this study, PGCs collected from Rugao yellow chicken embryonic eggs at Day 5.5 were cultured in media containing 0, 5, 10, 20, 50, and 100 µg/mL insulin. The results showed that insulin regulates cell proliferation in PGCs in a dose-dependent way, with an optimal dose of 10 µg/mL. Insulin mediates the mRNA expression of cell cycle-, apoptosis-, and ferroptosis-related genes. Insulin at 50 µg/mL and 100 µg/mL slowed down the proliferation with elevated ion content and GSH/oxidized glutathione (GSSG) in PGCs compared to 10 µg/mL. In addition, insulin activates the PI3K/AKT/mTOR pathway dose dependently. Collectively, this study demonstrates that insulin reduces apoptosis and ferroptosis and enhances cell proliferation in a dose-dependent manner via the PI3K-AKT-mTOR signaling pathway in PGCs, providing a new addition to the theory of the regulatory role of the growth and proliferation of PGC in vitro cultures.


Assuntos
Ferroptose , Proteínas Proto-Oncogênicas c-akt , Embrião de Galinha , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Galinhas/metabolismo , Células Germinativas/metabolismo , Transdução de Sinais , Proliferação de Células , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose
6.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569891

RESUMO

The role of gga-miR-31 in chicken germ cell differentiation and spermatogenesis is of significant importance. The transcriptional properties of gga-miR-31 are crucial in establishing the foundation for the formation of chicken spermatogonia stem cells and spermatogenesis. In this study, a series of recombinant vectors including varying lengths of the gga-miR-31 promoter were predicted and constructed. Through the utilization of the dual luciferase reporting system, the upstream -2180~0 bp region of gga-miR-31 was identified as its promoter region. Furthermore, it was predicted and confirmed that the activity of the gga-miR-31 promoter is increased by retinoic acid (RA). The binding of RA to the gga-miR-31 and Stra8 promoter regions was found to be competitive. Through the deletion of C-jun binding sites and the manipulation of C-jun expression levels, it was determined that C-jun inhibits the activity of the gga-miR-31 promoter. Furthermore, the combined treatment of C-jun and RA demonstrated that the positive regulatory effect of RA on the gga-miR-31 promoter is attenuated in the presence of high levels of C-jun. Overall, this study establishes a foundation for further investigation into the regulatory mechanisms of gga-miR-31 action, and provides a new avenue for inducing chicken embryonic stem cells (ESC) to differentiate into spermatogonial stem cells (SSC), and sperm formation.


Assuntos
MicroRNAs , Tretinoína , Embrião de Galinha , Animais , Masculino , Tretinoína/farmacologia , Galinhas/genética , Galinhas/metabolismo , Sêmen/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas
8.
Stem Cells Int ; 2023: 4956871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056458

RESUMO

Autophagy plays an important role in the pluripotency and differentiation of stem cells. Transcriptome data showed that the autophagy genes MAP1LC3A and MAP1LC3B were significantly upregulated in primordial germ cells (PGCs). The Kyoto Encyclopedia of Genes and Genome (KEGG) results showed that the lysosome signaling pathway, which is related to autophagy, was significantly enriched in PGCs. Quantitative RT-PCR, western blotting, and transmission electron microscopy (TEM) results showed that autophagy was expressed in both embryonic stem cells (ESCs) and PGCs but was significantly activated in PGCs. To explore the role of autophagy in the differentiation of chicken ESCs into PGCs, autophagy was activated and inhibited using rapamycin and bafilomycin A1, respectively. Results of qRT-PCR, flow cytometry, and indirect immunofluorescence showed that the efficiency of PGC formation significantly decreased after autophagy inhibition. Our results showed, for the first time, that autophagy plays an indispensable role in the formation of chicken PGCs, which lays the foundation for studying the mechanism of autophagy in chicken PGCs and in bird gene editing and the rescue of endangered birds.

9.
Animals (Basel) ; 13(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36978637

RESUMO

Chicken is one of the most widely consumed sources of protein globally. Primordial germ cells (PGCs) are the precursors for ova and sperm. One of the early embryogenesis events in most animals is the segregation of the somatic and germ lineages. PGC cultures occur in the germline, and PGCs are less studied in many species. It is relatively challenging to separate, cultivate, and genetically alter chicken without mutating the basic germline. The present study aims to gather previous research about chicken PGCs and provide a customized review of studies and developments in the field of PGCs, especially for avian species. Furthermore, we show that the propagation of chicken PGCs into embryonic germ cells that contribute to somatic tissues may be produced in vitro. Primordial germ cells offer an ideal system in developmental biology, as these cells play a vital role in the genetic modification and treatment of infertility. Cryopreservation helps to maintain genetic resources and sustainable production in the poultry industry. Keeping in mind the significance of cryopreservation for storage and gametogenesis, we discuss its role in the preservation of primordial germ cells. Transgenesis and genetic modifications in chicken lead to the development of various medicinal chicken varieties and aid in improving their production and quality for consumption purposes. Additionally, these characteristics open up new possibilities for modifying the chicken genome for agricultural and medical purposes.

10.
Poult Sci ; 102(4): 102552, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921513

RESUMO

Spermatogonia Stem Cells (SSCs) are the basis of spermatogenesis. In the poultry industry, asthenospermia and azoospermia in roosters seriously reduce economic benefits. In this study, we explored SSCs formation mechanisms in detail. TDRD1, which is a downstream target gene of TCF7L2 and is modified by histone methylation, was screened through multiomics analysis. Functionally, RT-qPCR, flow cytometry, immunohistochemistry, and indirect immunofluorescence results showed that H3K4me2 regulated TDRD1 to promote SSCs formation both in vivo and in vitro. Furthermore, ChIP-qPCR and dual luciferase assays showed that H3K4me2 was enriched in the -800 to 0 bp region of the TDRD1 promoter and positively regulated TDRD1 transcription to promote SSCs formation. Interestingly, in mechanistic terms, dual luciferase assays showed that TDRD1 transcription levels were significantly decreased after co-transfection with dCas9-LSD1-P1/P2/P3 and OETCF7L2, while TDRD1 transcript levels were not significantly altered after transfecting dCas9-LSD1-P4 and OETCF7L2. These results suggested that H3K4me2 enrichment in P1, P2, and P3 of the TDRD1 promoter promotes TDRD1 transcription by reducing enrichment of TCF7L2. This study explored the specific regulatory mechanisms involving the Wnt signaling pathway, H3K4me2, and TDRD1, enriched the regulatory network regulating the formation of SSCs, and laid a theoretical foundation for the specific application of SSCs.


Assuntos
Galinhas , Espermatogônias , Masculino , Animais , Galinhas/genética , Espermatogônias/metabolismo , Espermatogênese , Células-Tronco , Histona Desmetilases/metabolismo
11.
Mol Reprod Dev ; 90(5): 275-286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966461

RESUMO

Meiosis, a key step in spermatogenesis, is affected by many factors. Current studies have shown that long noncoding RNAs (lncRNAs) are potential factors regulating meiosis, and their regulatory mechanisms have received much attention. However, little research has been done on its regulatory mechanism in the spermatogenesis of roosters. Here, we found that lncRNA involved in meiosis and spermatogenesis (lncRNA-IMS) was involved in the regulation of Stra8 by gga-miR-31-5p and hindered the inhibition of Stra8 by gga-miR-31-5p. The acquisition and loss of function experiments demonstrated that lncRNA-IMS was involved in meiosis and spermatogenesis. In addition, we predicted and determined the core promoter region of lncRNA-IMS. Prediction of transcription factors, deletion/overexpression of binding sites, knockdown/overexpression of Jun, and dual-luciferase reporter analysis confirmed that Jun positively activated transcription of lncRNA-IMS. Our findings further enrich the TF-lncRNA-miRNA-mRNA regulatory network during male meiosis and provide new ideas for studying the molecular mechanism of meiosis and spermatogenesis in chicken spermatogonial stem cells.


Assuntos
Células-Tronco Germinativas Adultas , Proteínas Aviárias , Meiose , MicroRNAs , RNA Longo não Codificante , Animais , Masculino , Células-Tronco Germinativas Adultas/metabolismo , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Aviárias/metabolismo
12.
J Cell Physiol ; 238(3): 610-630, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36745473

RESUMO

Currently, studies have analyzed the formation mechanism of primordial germ cell (PGC) at the transcriptional level, but few at the protein level, which made the mechanism study of PGC formation not systematic. Here, we screened differential expression proteins (DEPs) regulated PGC formation by label-free proteomics with a novel sampling strategy of embryonic stem cells and PGC. Analysis of DEPs showed that multiple key events were involved, such as the transition from glycolysis to oxidative phosphorylation, activation of autophagy, low DNA methylation ensured the normal formation of PGC, beyond that, protein ubiquitination also played an important role in PGC formation. Importantly, the progression of such events was attributed to the inconsistency between transcription and translation. Interestingly, MAPK, PPAR, Wnt, and JAK signaling pathways not only interact with each other but also interact with different events to participate in the formation of PGC, which formed the PGC regulatory network. According to the regulatory network, the efficiency of PGC formation in induction system can be significantly improved. In conclusion, our results indicate that chicken PGC formation is a complex process involving multiple events and signals, which provide technical support for the specific application in PGC research.


Assuntos
Galinhas , Células Germinativas , Proteoma , Proteômica , Animais , Diferenciação Celular , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Fosforilação Oxidativa , Glicólise , Autofagia , Ubiquitinação , Transdução de Sinais , Proteoma/análise , Proteoma/biossíntese , Proteoma/metabolismo
13.
Anim Biotechnol ; 34(1): 56-66, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34153202

RESUMO

Mono-Sex culturing is an important methodology for intensive livestock and poultry production. Here, Hintw was identified as a potential key gene in sex-determination process in chickens via RNA-seq. Then we developed an effective method to interfere or overexpress Hintw in chicken embryos through the intravascular injection. QRT-PCR, ELISA and H&E staining were used to detect the effects of Hintw on gonadal development of chicken embryos. Results showed that Hintw exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads. The qRT-PCR analysis showed that Foxl2, Cyp19a1 in females were upregulated under the overexpression of Hintw, while Sox9 and Dmrt1 were downregulated Hintw. Overexpression of Hintw can promote the development of gonadal cortex, while interference with Hintw show the opposite result. Additionally, we found that overexpression of the Hintw in male chicken embryos could inhibit androgen levels and increase estrogen levels. On the other hand, interfering with Hintw in female chicken embryos decreased estrogen levels and increased androgen levels. In conclusion, this work sets the basis for the understanding of the molecular regulatory network for the sex-determination process in chicken embryos as well as providing the theoretical basis for mono-sex culturing of poultry.


Assuntos
Proteínas Aviárias , Galinhas , Processos de Determinação Sexual , Animais , Embrião de Galinha , Feminino , Masculino , Androgênios/metabolismo , Galinhas/genética , Estrogênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual , Proteínas Aviárias/metabolismo
14.
Stem Cell Rev Rep ; 19(1): 213-229, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35925437

RESUMO

BACKGROUND: The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE: To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS: The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS: The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION: The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.


Assuntos
Exossomos , Camundongos , Ratos , Animais , Suínos , Diferenciação Celular , Fosfatase Alcalina , Medula Óssea , Fibrose
15.
Genes (Basel) ; 15(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275591

RESUMO

To investigate the regulatory mechanism of the competing endogenous RNAs (ceRNAs) on the egg performance of Gaoyou ducks, full transcriptome sequencing was performed to analyze the ovarian tissues in Gaoyou ducks. The ducks were categorized into high- and low-yield groups based on the individual in-cage egg production records and the hematoxylin-eosin (HE) staining results. The differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) were further processed by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. In total, 72 DEmRNAs; 23 DElncRNAs; 4 DEcircRNAs; and 5 signaling pathways, including the ovarian steroidogenesis, PI3K-Akt, hedgehog, tryptophan metabolism, and oocyte meiosis signaling pathways, were significantly enriched. These results suggest that they could be associated with the Gaoyou duck's ovarian function and affect the total egg production or double-yolked egg production. Furthermore, a coregulation network based on the related candidate ceRNAs across the high- and low-yield egg production groups was constructed. Our findings provide new insights into the mechanisms underlying the molecular regulation of related circRNA/lncRNA-miRNA-mRNA in the egg production and double-yolked egg traits of Gaoyou ducks.


Assuntos
Patos , MicroRNAs , Feminino , Animais , Patos/genética , RNA Endógeno Competitivo , Ovário , Fosfatidilinositol 3-Quinases , Transcriptoma/genética , MicroRNAs/genética , RNA Circular/genética
16.
J Cell Physiol ; 237(9): 3640-3650, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790000

RESUMO

Detailed analysis of the regulatory mechanism of spermatogonia stem cell (SSCs) genesis can provide a novel strategy for the application of SSCs in the fields of transgenic animal production and regenerative medicine. Previous studies in this study showed that WNT signaling can positively regulate the formation of SSCs, but the exact regulatory mechanism is not clear. Here, we predicted the target gene of the Wnt/TCF7L2 pathway, namely TDRD1, by bioinformatics analysis. Functional studies revealed that overexpression of TDRD1 during RA-induced SSCs formation in vitro significantly upregulated the expression of reproductive marker genes (Integrinß1 and Integrinα6), and further flow cytometric analysis also confirmed that the formation efficiency of SSCs was significantly increased after overexpression of TDRD1; while interference with TDRD1 showed the exact opposite result. The in vivo experiments were consistent with the results of the in vitro experiments. Interestingly, although Wnt/TCF7L2 can promote the formation of SSCs, its function must be dependent on the expression of TDRD1, which was also repeatedly demonstrated as a target gene of the Wnt/TCF7L2 signaling pathway. Mechanistically, we found a large number of CpG sites in the TDRD1 promoter, and BSP analysis also confirmed that DNA methylation modifications in the TDRD1 promoter were significantly higher in embryonic stem cells than in SSCs, and further dual-luciferase reporter system assays revealed that low DNA methylation modification levels could enhance TDRD1 promoter activity; although previous studies demonstrated that TCF7L2 could enrich in the TDRD1 promoter region, the binding of the two was dependent on low DNA methylation modification. Taken together, we confirmed that low DNA methylation mediates Wnt/TCF7L2 regulation of TDRD1 to promote the formation of SSCs, providing a basis for SSCs in improving animal productivity.


Assuntos
Células-Tronco Germinativas Adultas , Via de Sinalização Wnt , Células-Tronco Germinativas Adultas/metabolismo , Animais , DNA/metabolismo , Metilação de DNA/genética , Células-Tronco Embrionárias/metabolismo , Masculino , Espermatogônias/metabolismo , Via de Sinalização Wnt/genética
17.
Cytotechnology ; 74(3): 371-383, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35733702

RESUMO

OCT4, SOX2 and NANOG (OSN) are the key factors of cell reprogramming, which are involved in the maintenance of stem cell pluripotency. Recently, it has been found that glycolysis plays an important role in the process of somatic-cell-induced reprogramming; however, the synergistic effect of OSN on glycolysis has rarely been reported. In this study, chicken embryonic fibroblasts (CEF) was reprogrammed into induced pluripotent stem cells (iPSCs) by OCT4, SOX2, NANOG and LIN28 reprogramming strategy. RNA-seq showed that chicken iPSCs highly expressed pluripotent genes and the expression of the key genes of glycolysis, such as Hk1, Pfkp and Ldha, was also at a high level, while CEF was much lower. Glycolysis gene expression, glucose uptake and lactate production of CEF and iPSCs were also detected. The results showed that the glycolysis level of iPSCs was higher than that of CEF. ChIP-qPCR showed that SOX2 and NANOG transcription factors were significantly enriched in the promoter regions of Hk1, Pfkp and Ldha, while OCT4 was not. The above results indicated that OCT4, SOX2 and NANOG coordinately regulate glycolysis and participate in somatic-cell-induced reprogramming, thus setting a good foundation for further research on the molecular mechanism of somatic-cell-induced reprogramming. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00530-6.

18.
Front Physiol ; 13: 856980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464085

RESUMO

Background: Sex differentiation is a complex and precisely regulated process by multiple genes in chicken. However, it is still unclear on the key genes of sex differentiation. Objective: To explore the function of Tle4z1 screened by RNA-seq sequencing on sex differentiation during the development of chicken embryos. Methods: Tle4z1 was differentially expressed from the RNA-seq of ESCs and PGCs in male and female chickens. Then, we established an effective method to overexpression or knocking down the expression of Tle4z1 in ovo and in vitro, respectively. Histomorphological observation, qRT-PCR and ELISA were applied to detect the function of Tle4z1 in the process of male sex differentiation by injecting vectors into embryos at day 0. Results: It showed that Tle4z1 has significant male preference in embryonic day 4.5, such phenomenon persisted during the growth period of chicken embryos. Morphological observation results showed that the gonads on both sides of genetic male (ZZ) embryos with Tle4z1 knocking down developed asymmetrically, the gonadal cortex became thicker showing the typical characteristics of genetic female (ZW) gonads. Furthermore, the expression of Cyp19a1, which dominates female differentiation, was significantly increased, while the expression of male marker genes Dmrt1, Sox9, WT1 and AR was significantly downregulated. In addition, the concentration of testosterone also significantly decreased, which was positively correlated with the expression of Tle4z1 (P < 0.01). Conversely, the ZW embryo showed defeminized development when Tle4z1 was overexpressed. Conclusion: We prove that the Tle4z1 is a novel gene through the male sexual differentiation via gene regulation process and synthesis of testosterone, which construct the basis for understanding the molecular mechanism of sex differentiation in chickens.

19.
Mol Genet Genomics ; 297(3): 903-910, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347417

RESUMO

Tudor domain containing 1 (TDRD1) is a member of the TDRD family and plays an important role in embryogenesis and gametogenesis. A detailed study of the characteristics of chicken TDRD1 can lay a foundation for the study of chicken spermatogonia stem cell formation and spermatogenesis. We cloned 2117 bp upstream fragment of TDRD1 promoter and constructed a series of recombinant vectors with different length deletions. The dual-luciferase experiments reveal that the upstream region of - 161 to 0 bp was its core transcription promoter region. Bioinformatics analysis predicted the possible binding of Transcription Factor 7 Like 2 (TCF7L2) and Zinc Finger E-Box-Binding Homeobox 1(ZEB1) transcription factors in the core region. The transcriptional activity of TDRD1 was significantly decreased after mutation of TCF7L2-binding site, while that of TDRD1 was significantly increased after mutation of ZEB1-binding site. Further, ChIP experiments verified that TCF7L2 enriched in the TDRD1 core transcriptional initiation region, suggesting that TCF7L2 and ZEB1 play an important role in the regulation of TDRD1. In summary, the region from - 161 to 0 bp is the core promoter region of TDRD1; ZEB1 and TCF7L2 bind to the TDRD1 promoter region and TCF7L2 activates the transcription of TDRD1 gene.


Assuntos
Proteínas de Ciclo Celular/genética , Galinhas , Fatores de Transcrição , Animais , Sítios de Ligação/genética , Galinhas/genética , Masculino , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
20.
Gene ; 820: 146227, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35124150

RESUMO

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis. Systematically exploring the critical factors associated with the formation of SSCs will provide new insight to improve the formation efficiency, and their practical application. Here we explore the regulatory mechanism of the ECM-receptor interaction signaling pathway and related genes during differentiation of SSCs in chicken. Firstly, the positive cell rate of SSCs protein marker was detected by immunofluorescence and flow cytometry and qRT-PCR was used to identify, the expression of related marker genes after 10 days of RA-induction. Secondly, the ESCs on 0d/ 4d /10d after RA- induction/self-differentiation were collected, and the total RNA was then extracted from cells. Finally, high-throughput analysis methods (RNA-seq) were used to sequence the transcriptome of these cells. After PCA analysis of the RNA-seq data, Venny analysis, GO and KEGG enrichment were further used to find the key signaling pathways and genes in the RA-induction process. The results showed that on day 10 of RA-induction, grape cluster growth cells expressed integrinß1, the specific marker protein of SSCs cells, and the integrinß1 positive rate was 35.1%. Also, SSCs marker genes CVH, Integrinß1, Integrinα6 were significantly up-regulated during RA-induction. Moreover, the significantly enriched pathway, ECM-receptor interaction signaling, in current study may play a crucial role in RA-induction. Then, JASPAR was used to predict the differential gene transcription factors in the signaling pathway, finding that RA receptor was a transcription factor of COL5A1, COL5A2 and COL3A1. The qRT-PCR results showed that the expression levels of RA receptors (RXRA, RARA and RXRG) and the predicted genes (COL5A1, COL5A2 and COL3A1) were both significantly increased during RA-induction. Also, dual-luciferase reporter assay showed that RA could affect the luciferin activities of COL5A1, COL5A2 and COL3A1. These results suggest that RA plays a crucial role in the formation of chicken spermatogonial stem cells via the transcription levels of COL5A1, COL5A2 and COL3A1 to regulate the ECM-receptor interaction signaling pathway. Additionally, knockdown of COL5A1/COL5A2/COL3A1 could effectively reduce the formation efficiency of SSCs. This indicated that the interference of RA receptor binding genes in the ECM-receptor interaction signaling pathway could decrease the efficiency of RA induced SSCs formation. Therefore, this study concludes that RA promotes formation of chicken spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway.


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Células-Tronco Germinativas Adultas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Tretinoína/farmacologia , Animais , Diferenciação Celular , Galinhas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA