Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 252: 108559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952905

RESUMO

During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.


Assuntos
Proteínas do Capsídeo , Neoplasias , Humanos , Proteínas do Capsídeo/genética , RNA Mensageiro , Peptídeos/química , Mutação , Neoplasias/genética
2.
Peptides ; 165: 171011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068711

RESUMO

Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response.


Assuntos
Anti-Infecciosos , Catelicidinas , Domínios Proteicos , Animais , Humanos , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Catelicidinas/química , Catelicidinas/genética , Imunidade Inata , Mamíferos , Domínios Proteicos/fisiologia
3.
Methods Enzymol ; 663: 67-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168798

RESUMO

Antimicrobial peptides (AMP) are present in all organisms and can present several activities and potential applications in human and animal health. Screening these molecules scaffolds represents a key point for discovering and developing novel biotechnological products, including antimicrobial, antiviral and anticancer drugs candidates and insecticidal molecules with potential applications in agriculture. Therefore, considering the amount of biological data currently deposited on public databases, computational approaches have been commonly used to predicted and identify novel cysteine-rich peptides scaffolds with known or unknown biological properties. Here, we describe a step-by-step in silico screening for cysteine-rich peptides employing molecular modeling (with a core focus on comparative modeling) and atomistic molecular dynamics simulations. Moreover, we also present the concept of additional tools aiming at the computer-aided screening of new Cs-AMPs based drug candidates. After the computational screening and peptide chemical synthesis, we also provide the reader with a step-by-step in vitro activity evaluation of these candidates, including antibacterial, antifungal, and antiviral assays.


Assuntos
Cisteína , Peptídeos , Animais , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia
4.
Expert Rev Clin Pharmacol ; 13(4): 367-390, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32357080

RESUMO

INTRODUCTION: The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.


Assuntos
Anti-Infecciosos/farmacologia , Desenvolvimento de Medicamentos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Produtos Biológicos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Regulação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional
5.
Biotechnol Adv ; 41: 107533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32151692

RESUMO

Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.


Assuntos
Briófitas , Bryopsida , Reatores Biológicos , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...