RESUMO
Hypothyroidism compromises the testicular redox status and is associated with reduced sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response (UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite, SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1) and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concentrations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the production of peroxynitrite, while increased SOD1 and GPX ½ expression, and enzymatic activity of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it improves the testicular redox status, configuring it as an important antioxidant factor in situations of thyroid dysfunction.
Assuntos
Antioxidantes , Hipotireoidismo , Humanos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Testículo/metabolismo , Kisspeptinas/metabolismo , Ratos Wistar , Superóxido Dismutase-1/genética , Chaperona BiP do Retículo Endoplasmático , Ácido Peroxinitroso/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Sêmen/metabolismo , Oxirredução , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Estresse Oxidativo , Resposta a Proteínas não DobradasRESUMO
BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.
RESUMO
In this study we aimed to develop a roflumilast (R) and formoterol fumarate (F) dry powder inhaler formulation (DPI) incorporating HPßCD by spray drying and evaluated if it attenuates the inflammatory process and improves lung function in a murine model of ovalbumin induced allergic asthma. The DPI was characterized by powder X-ray diffraction, thermal analysis, scanning electron microscopy, particle size, density, specific surface area and dynamic vapor sorption analyses. In vitro deposition studies were performed using a NGI, while transepithelial permeability and in vivo effects on lung mechanics and inflammation in a model of allergic asthma were also assessed. The R:F formulation was amorphous with high glass transition temperatures, comprised of wrinkled particles, had low bulk and tapped densities, high surface area, suitable particle size for pulmonary delivery and exhibited no recrystallization even at high relative humidities. MMAD were statistically similar of 4.22 ± 0.19 and 4.32 ± 0.13 µm for F and R, respectively. Fine particle fractions (<5 µm) were of more than 50% of the emitted dose. The R:F formulation led to reduced eosinophil infiltration and airway collagen fiber content, yielding decreased airway hyperresponsiveness. In the current asthma model, the R:F formulation combination decreased inflammation and remodeling, thus improving lung mechanics.
Assuntos
Asma , Inaladores de Pó Seco , Administração por Inalação , Aminopiridinas , Animais , Asma/tratamento farmacológico , Benzamidas , Ciclopropanos , Fumarato de Formoterol/uso terapêutico , Camundongos , Tamanho da Partícula , Pós/uso terapêuticoRESUMO
Inhalation of silica particles causes silicosis: an occupational lung disease characterized by persistent inflammation with granuloma formation that leads to tissue remodeling and impairment of lung function. Although silicosis has been studied intensely, little is known about the crucial cellular mechanisms that initiate and drive the process of inflammation and fibrosis. Recently, found in inflammatory zone 1 (FIZZ1) protein, produced by alveolar macrophages and fibroblasts have been shown to induce the proliferation of myofibroblasts and their transdifferentiation, causing tissue fibrosis. Moreover, autoimmunogenic collagen V, produced by alveolar epithelial cells and fibroblasts, is involved in the pathophysiology of interstitial pulmonary fibrosis and bleomycin-induced lung fibrosis. Based on the aforementioned we hypothesized that FIZZ1 and collagen V may be involved in the silicotic granuloma process in mice lungs. Male C57BL/6 mice (N = 20) received intratracheal administration of silica particles (Silica; 20 mg in 50 µL saline) or saline (Control; 50 µL). After 15 days, the lung histology was performed through immunohistochemistry and morphometric analysis. Within silicotic granulomas, collagen V and FIZZ1 increased, while peroxisome proliferator-activated receptor gamma (PPARγ) positive cells decreased. In addition, the expression of proteins Notch-1, alpha smooth muscle actin (α-SMA) and macrophages163 (CD163) were higher in silicotic granulomas than control lungs. A significant positive correlation was found between collagen V and FIZZ1 (r = 0.70; p < 0.05), collagen V and Notch-1 (r = 0.72; p < 0.05), whereas Collagen V was inversely associated with peroxisome proliferator-activated receptor gamma (r=-0.69; p < 0.05). These findings suggested that collagen V association with FIZZ1, Notch-1 and PPARγ might be a key pathogenic mechanism for silicotic granulomas in mice lungs.
Assuntos
Colágeno/metabolismo , Granuloma/patologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Inflamação/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Transdução de Sinais/fisiologia , Silicose/metabolismo , Silicose/patologiaRESUMO
Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-ß1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-ß), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.
Assuntos
Asma/metabolismo , Ácido Eicosapentaenoico/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Asma/etiologia , Asma/patologia , Asma/terapia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Feminino , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Muco/metabolismo , Timo/imunologia , Timo/metabolismoRESUMO
The original version of this article unfortunately contains an error. The third author's name "Patricia Rieken Macedo Rocco" was incorrectly spelled with "Roccco". The correct author name is now presented in the authorgroup.
RESUMO
According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.