Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 179: 765-778, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31284086

RESUMO

Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 µM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 µM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Malária/tratamento farmacológico , Schistosoma mansoni/metabolismo , Tripanossomicidas/farmacologia , Animais , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Malária/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Schistosoma mansoni/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
2.
Folia Microbiol (Praha) ; 64(4): 509-519, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30734157

RESUMO

Dermatophytes are the etiological agents of cutaneous mycoses, including the prevalent nail infections and athlete's foot. Candida spp. are opportunistic and emerging pathogens, causing superficial to deeper infections related to high mortality rates. As a consequence of prolonged application of antifungal drugs, the treatment failures combined with multidrug-resistance have become a serious problem in clinical practice. Therefore, novel alternative antifungals are required urgently. δ-Lactones have attracted great interest owing to their wide range of biological activity. This article describes the antifungal activity of synthetic δ-lactones against yeasts of the genus Candida spp. and dermatophytes (through the broth microdilution method), discusses the pathways by which the compounds exert this action (toward the fungal cell wall and/or membrane), and evaluates the toxicity to human leukocytes and chorioallantoic membrane (by the hen's egg test-chorioallantoic membrane). Two of the compounds in the series presented broader spectrum of antifungal activity, including against resistant fungal species. The mechanism of action was related to damage in the fungal cell wall and membrane, with specific target action dependent on the type of substituent present in the δ-lactone structure. The damage in the fungal cell was corroborated by electron microscopy images, which evidenced lysed and completely altered cells after in vitro treatment with δ-lactones. Toxicity was dose dependent for the viability of human leukocytes, but none of the compounds was mutagenic, genotoxic, or membrane irritant when evaluated at higher concentrations than MIC. In this way, δ-lactones constitute a class with excellent perspectives regarding their potential applications as antifungals.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Lactonas/química , Lactonas/farmacologia , Antifúngicos/toxicidade , Arthrodermataceae/efeitos dos fármacos , Candida/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Desenvolvimento de Medicamentos , Humanos , Lactonas/toxicidade , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...