Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; 19(30): e2300824, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060220

RESUMO

Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser-deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3 Fe5 O12 garnet. Data derived from X-ray core-level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+ , the octahedral sites by Fe3+ , Tb3+ and vacancies, and the tetrahedral sites by Fe3+ and vacancies. Energy dispersive X-ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFe antisites. A small fraction of Fe2+ is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.

2.
Phys Rev Lett ; 124(6): 067202, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109129

RESUMO

Understanding many-body physics of elementary excitations has advanced our control over material properties. Here, we study spin-flip excitations in NiO using Ni L_{3}-edge resonant inelastic x-ray scattering (RIXS) and present a strikingly different resonant energy behavior between single and double spin-flip excitations. Comparing our results with single-site full-multiplet ligand field theory calculations we find that the spectral weight of the double-magnon excitations originates primarily from the double spin-flip transition of the quadrupolar RIXS process within a single magnetic site. Quadrupolar spin-flip processes are among the least studied excitations, despite being important for multiferroic or spin-nematic materials due to their difficult detection. We identify intermediate state multiplets and intra-atomic core-valence exchange interactions as the key many-body factors determining the fate of such excitations. RIXS resonant energy dependence can act as a convincing proof of existence of nondipolar higher-ranked magnetic orders in systems for which, only theoretical predictions are available.

3.
Phys Rev Lett ; 123(20): 207201, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809079

RESUMO

The magnitude of the orbital magnetic moment and its role as a trigger of the Verwey transition in the prototypical Mott insulator, magnetite, remain contentious. Using 1s2p resonant inelastic x-ray scattering angle distribution (RIXS-AD), we prove the existence of noncollinear orbital magnetic ordering and infer the presence of dynamical distortion creating a polaronic precursor for the metal to insulator transition. These conclusions are based on a subtle angular shift of the RIXS-AD spectral intensity as a function of the magnetic field orientation. Theoretical simulations show that these results are only consistent with noncollinear magnetic orbital ordering. To further support these claims we perform Fe K-edge x-ray magnetic circular dichroism in order to quantify the Fe average orbital magnetic moment.

4.
Phys Rev Lett ; 122(14): 147601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050473

RESUMO

Ba(Ni_{1-x}Co_{x})_{2}As_{2} is a structural homologue of the pnictide high temperature superconductor, Ba(Fe_{1-x}Co_{x})_{2}As_{2}, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum T_{c}=2.3 K, compared to 24 K in its iron-based cousin, and the origin of this T_{c} suppression is not known. Using x-ray scattering, we show that Ba(Ni_{1-x}Co_{x})_{2}As_{2} exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizable lattice distortion, and is accompanied by the appearance of α Fermi surface pockets in photoemission [B. Zhou et al., Phys. Rev. B 83, 035110 (2011)PRBMDO1098-012110.1103/PhysRevB.83.035110], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_{c} suppression in this system.

5.
Phys Rev Lett ; 119(19): 196402, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219525

RESUMO

We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

6.
Nat Commun ; 8: 15929, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660878

RESUMO

The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin-orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.

7.
Struct Dyn ; 3(4): 043204, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26958587

RESUMO

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.

8.
Nature ; 520(7545): 78-81, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832405

RESUMO

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16 - 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

10.
J Phys Condens Matter ; 24(43): 435602, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23034342

RESUMO

The colossal magnetoresistance manganites La(0.87±0.02)Sr(0.12±0.02)MnO(3+δ), La(0.78±0.02)Sr(0.17±0.02)MnO(3+δ), and La(0.66±0.02)Sr(0.36±0.02)MnO(3+δ) (δ close to 0) were investigated by using soft x-ray magnetic circular dichroism (XMCD) and magnetometry. Very good agreement between the values for the average Mn magnetic moments determined with these two methods was achieved by correcting the XMCD spin sum rule results by means of charge transfer multiplet calculations, which also suggest a charge transfer of ~50% for Mn(4+) and approximately equal to 30% for Mn(3+). The magnetic moment was found to be localized at the Mn ions for x = 0.17 and 0.36 at 80 K and for x = 0.12 in the temperature range from 80 to 300 K. We discuss our findings in the light of previously published data, confirming the validity of our approach.


Assuntos
Dicroísmo Circular/métodos , Íons , Compostos de Manganês/química , Manganês/química , Algoritmos , Magnetismo , Magnetometria/métodos , Física/métodos , Reprodutibilidade dos Testes , Temperatura , Raios X
11.
J Phys Condens Matter ; 23(14): 145501, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21427477

RESUMO

First principles calculations are performed for the interpretation of the L2,3 x-ray absorption spectrum of calcium oxide and calcium fluoride. The first principles calculations are based on configuration interaction (CI) calculations using fully relativistic molecular spinors. The first principles results are compared to experimental data and also to calculations based on a semi-empirical crystal field multiplet model and also on a multichannel multiple scattering method. We show that the CI calculations show good agreement with experiment, both for bulk and for surface experiments. The remaining differences with experiment and between the theoretical models are discussed in detail.

12.
Phys Rev Lett ; 103(13): 137401, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19905539

RESUMO

Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La N_{IV,V} x-ray absorption edge are experimentally observed in LaPO_{4} nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p;{5}epsilonl and 5p;{5}4f;{1} states.

13.
J Phys Chem A ; 113(12): 2750-6, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19296706

RESUMO

Sulfur K-edge XANES has been measured for three sulfur model compounds, dibenzothiophene, dibenzothiophene sulfone, and aliphatic sulfur (DL-methionine). The spectra have been simulated with Density Functional Theory (DFT) by using a number of methods, including the half-core-hole approximation. Dipole transition elements were calculated and the transitions were convoluted with linearly increasing Gaussian functions in the first 20 eV of the near-edge region. In the case of dibenzothiophene, relaxation of the first excited states in the presence of the core-hole gave a further improvement. The theoretical results reproduce well the features of the spectra and give insight in the relation between geometric structure and molecular orbitals. Though DL-methionine and dibenzothiophene show a similar sharp rise of the white line, their molecular levels are quite different, pointing out the difficulties in finding useful "fingerprints" in the spectra for specific compounds.


Assuntos
Metionina/química , Compostos de Enxofre/química , Tiofenos/química , Modelos Moleculares , Análise Espectral , Raios X
14.
J Phys Chem B ; 110(20): 9984-90, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706456

RESUMO

Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy (STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a crystalline particle, where the dopant-rich phase is located at the surface of the dopant-deficient phase. The limiting structure appears to be a solid solution with a La fraction of x = 0.6 in the bulk and x = 0.75 at the surface. Up to a La fraction of 0.6, this phase will coexist with a lanthanum-type structure in different proportions depending on the dopant amount. STEM-EELS appears to be a powerful technique to clarify the existence of a multiphase system, and it shows that XRF, XPS, and XRD measure averaged results and do not show the phase complexity of the solids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...