RESUMO
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Assuntos
Pareamento Cromossômico , Troca Genética , Meiose , Ubiquitina-Proteína Ligases , Animais , Camundongos , Masculino , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Camundongos Knockout , Humanos , LigasesRESUMO
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.
Assuntos
Meiose , RNA Mensageiro , Proteínas de Ligação a RNA , Espermatogênese , Animais , Masculino , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Espermatogênese/genética , Espermatogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Estabilidade de RNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , RNA HelicasesRESUMO
Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.
Assuntos
Proteínas de Ligação a DNA , Proteínas Repressoras , Humanos , Feminino , Masculino , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Correpressoras/genética , Correpressor 2 de Receptor Nuclear/genética , Tretinoína/farmacologia , Anticoncepção , Correpressor 1 de Receptor NuclearRESUMO
Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.
Assuntos
Histonas , Meiose , Masculino , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Sêmen/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Expressão Gênica , Mamíferos/genéticaRESUMO
The special cell cycle known as meiosis transforms diploid germ cells into haploid gametes. In mammalian testes, diploid spermatogenic cells become competent to transition from mitosis to meiosis in response to retinoic acid. In mice, previous studies revealed that MEIOC, alongside binding partners YTHDC2 and RBM46, represses mitotic genes and promotes robust meiotic gene expression in spermatogenic cells that have already initiated meiosis. Here, we molecularly dissect MEIOC-dependent regulation in mouse spermatogenic cells and find that MEIOC actually shapes the transcriptome much earlier, even before meiotic initiation. MEIOC, acting with YTHDC2 and RBM46, destabilizes mRNA targets, including transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the STRA8-MEIOSIN transcriptional regulator, which is required for the meiotic G1/S cell cycle transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of mitotic spermatogonia to transit from mitosis to meiosis.
RESUMO
Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.
Assuntos
Actinas , Dineínas , Animais , Humanos , Masculino , Camundongos , Actinas/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Sêmen/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismoRESUMO
Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase-separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation in living animals. Here, we show in vivo evidence of a critical nonenzymatic repressive function of cPRC1 component CBX2 in the male germline. CBX2 is up-regulated as spermatogonial stem cells differentiate and is required to repress genes that were active in stem cells. CBX2 forms condensates (similar to previously described Polycomb bodies) that colocalize with target genes bound by CBX2 in differentiating spermatogonia. Single-cell analyses of mosaic Cbx2 mutant testes show that CBX2 is specifically required to produce differentiating A1 spermatogonia. Furthermore, the region of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical, which distinguishes this from a mechanism that is reliant on histone modification.
Assuntos
Núcleo Celular , Cromatina , Animais , Masculino , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Espermatogênese/genéticaRESUMO
The spermatogonial compartment maintains spermatogenesis throughout the reproductive lifespan. Single-cell RNA sequencing (scRNA-seq) has revealed the presence of several spermatogonial clusters characterized by specific molecular signatures. However, it is unknown whether the presence of such clusters can be confirmed in terms of protein expression and whether protein expression in the subsets overlaps. To investigate this, we analyzed the expression profile of spermatogonial markers during the seminiferous epithelial cycle in cynomolgus monkeys and compared the results with human data. We found that in cynomolgus monkeys, as in humans, undifferentiated spermatogonia are largely quiescent, and the few engaged in the cell cycle were immunoreactive to GFRA1 antibodies. Moreover, we showed that PIWIL4+ spermatogonia, considered the most primitive undifferentiated spermatogonia in scRNA-seq studies, are quiescent in primates. We also described a novel subset of early differentiating spermatogonia, detectable from stage III to stage VII of the seminiferous epithelial cycle, that were transitioning from undifferentiated to differentiating spermatogonia, suggesting that the first generation of differentiating spermatogonia arises early during the epithelial cycle. Our study makes key advances in the current understanding of male germline premeiotic expansion in primates.
Assuntos
Espermatogênese , Espermatogônias , Adulto , Humanos , Animais , Masculino , Macaca fascicularis , Primatas , Ciclo CelularRESUMO
In brief: The testis-specific transcription factor, TCFL5, expressed in pachytene spermatocytes regulates the meiotic gene expression program in collaboration with the transcription factor A-MYB. Abstract: In male mice, the transcription factors STRA8 and MEISON initiate meiosis I. We report that STRA8/MEISON activates the transcription factors A-MYB and TCFL5, which together reprogram gene expression after spermatogonia enter into meiosis. TCFL5 promotes the transcription of genes required for meiosis, mRNA turnover, miR-34/449 production, meiotic exit, and spermiogenesis. This transcriptional architecture is conserved in rhesus macaque, suggesting TCFL5 plays a central role in meiosis and spermiogenesis in placental mammals. Tcfl5em1/em1 mutants are sterile, and spermatogenesis arrests at the mid- or late-pachytene stage of meiosis. Moreover, Tcfl5+/em1 mutants produce fewer motile sperm.
Assuntos
Placenta , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Gravidez , Macaca mulatta/metabolismo , Mamíferos/metabolismo , Meiose , Placenta/metabolismo , Sêmen/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismoRESUMO
In male mice, the transcription factor A MYB initiates the transcription of pachytene piRNA genes during meiosis. Here, we report that A MYB activates the transcription factor Tcfl5 produced in pachytene spermatocytes. Subsequently, A MYB and TCFL5 reciprocally reinforce their own transcription to establish a positive feedback circuit that triggers pachytene piRNA production. TCFL5 regulates the expression of genes required for piRNA maturation and promotes transcription of evolutionarily young pachytene piRNA genes, whereas A-MYB activates the transcription of older pachytene piRNA genes. Intriguingly, pachytene piRNAs from TCFL5-dependent young loci initiates the production of piRNAs from A-MYB-dependent older loci ensuring the self-propagation of pachytene piRNAs. A MYB and TCFL5 act via a set of incoherent feedforward loops that drive regulation of gene expression by pachytene piRNAs during spermatogenesis. This regulatory architecture is conserved in rhesus macaque, suggesting that it was present in the last common ancestor of placental mammals.
RESUMO
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Assuntos
Proteínas de Transporte , Proteínas de Choque Térmico , Meiose/genética , Mutação de Sentido Incorreto/genética , Insuficiência Ovariana Primária/genética , Recombinação Genética/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Knockout , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Sequenciamento do ExomaRESUMO
Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.
Assuntos
Diferenciação Celular , Proteínas de Ligação a RNA , Espermatogênese , Regiões 3' não Traduzidas , Animais , Diferenciação Celular/fisiologia , Masculino , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismoRESUMO
In mammals, testicular differentiation is initiated by transcription factors SRY and SOX9 in XY gonads, and ovarian differentiation involves R-spondin1 (RSPO1) mediated activation of WNT/ß-catenin signaling in XX gonads. Accordingly, the absence of RSPO1/Rspo1 in XX humans and mice leads to testicular differentiation and female-to-male sex reversal in a manner that does not requireSry or Sox9 in mice. Here we show that an alternate testis-differentiating factor exists and that this factor is Sox8. Specifically, genetic ablation of Sox8 and Sox9 prevents ovarian-to-testicular reprogramming observed in XX Rspo1 loss-of-function mice. Consequently, Rspo1 Sox8 Sox9 triple mutant gonads developed as atrophied ovaries. Thus, SOX8 alone can compensate for the loss of SOX9 for Sertoli cell differentiation during female-to-male sex reversal.
In humans, mice and other mammals, genetic sex is determined by the combination of sex chromosomes that each individual inherits. Individuals with two X chromosomes (XX) are said to be chromosomally female, while individuals with one X and one Y chromosome (XY) are chromosomally males. One of the major differences between XX and XY individuals is that they have different types of gonads (the organs that make egg cells or sperm). In mice, for example, before males are born, a gene called Sox9 triggers a cascade of events that result in the gonads developing into testes. In females, on the other hand, another gene called Rspo1 stimulates the gonads to develop into ovaries. Loss of Sox9 in XY embryos, or Rspo1 in XX embryos, leads to mice developing physical characteristics that do not match their genetic sex, a phenomenon known as sex reversal. For example, in XX female mice lacking Rspo1, cells in the gonads reprogram into testis cells known as Sertoli cells just before birth and form male structures known as testis cords. The gonads of female mice missing both Sox9 and Rspo1 (referred to as "double mutants") also develop Sertoli cells and testis cords, suggesting another gene may compensate for the loss of Sox9. Previous studies suggest that a gene known as Sox8, which is closely related to Sox9, may be able to drive sex reversal in female mice. However, it was not clear whether Sox8 is able to stimulate testis to form in female mice in the absence of Sox9. To address this question, Richardson et al. studied mutant female mice lacking Rspo1, Sox8 and Sox9, known as "triple mutants". Just before birth, the gonads in the triple mutant mice showed some characteristics of sex reversal but lacked the Sertoli cells found in the double mutant mice. After the mice were born, the gonads of the triple mutant mice developed as rudimentary ovaries without testis cords, unlike the more testis-like gonads found in the double mutant mice. The findings of Richardson et al. show that Sox8 is able to trigger sex reversal in female mice in the absence of Rspo1 and Sox9. Differences in sexual development in humans affect the appearance of individuals and often cause infertility. Identifying Sox8 and other similar genes in mice may one day help to diagnose people with such conditions and lead to the development of new therapies.
Assuntos
Ovário/embriologia , Fatores de Transcrição SOX9/fisiologia , Fatores de Transcrição SOXE/fisiologia , Testículo/embriologia , Animais , Feminino , Masculino , Camundongos , Trombospondinas/genéticaRESUMO
The journal and the authors apologise for an error in the above titled article published in this journal (vol 144, pp 433445). The authors inadvertently presented duplicate sperm images for XY and XESxrbO mouse testes of Fig. 6 (bottom panels). This error does not change the findings of the paper, as this figure does not give a quantitative breakdown of the proportions of different shapes.
RESUMO
Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5-18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development.
Assuntos
Gametogênese , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 1 Suprimida em Azoospermia/genética , Proteína 1 Suprimida em Azoospermia/metabolismo , Células Germinativas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismoRESUMO
GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.
Assuntos
Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Mitose , Proteínas Nucleares/metabolismo , Espermatócitos/citologia , Animais , Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Genoma , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Nucleares/genética , Espermatócitos/metabolismo , EspermatogêneseRESUMO
Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.
Assuntos
Oócitos/metabolismo , Ovário/crescimento & desenvolvimento , Espermatozoides/metabolismo , Testículo/crescimento & desenvolvimento , Tretinoína/metabolismo , Animais , Feminino , Gametogênese , Humanos , Masculino , Oócitos/citologia , Ovário/citologia , Ovário/metabolismo , Espermatozoides/citologia , Testículo/citologia , Testículo/metabolismoRESUMO
The mammalian sex chromosomes harbor an abundance of newly acquired ampliconic genes, although their functions require elucidation [1-9]. Here, we demonstrate that the X-linked Slx and Slxl1 ampliconic gene families represent mouse-specific neofunctionalized copies of a meiotic synaptonemal complex protein, Sycp3. In contrast to the meiotic role of Sycp3, CRISPR-loxP-mediated multi-megabase deletions of the Slx (5 Mb) and Slxl1 (2.3Mb) ampliconic regions result in post-meiotic defects, abnormal sperm, and male infertility. Males carrying Slxl1 deletions sire more male offspring, whereas males carrying Slx and Slxl1 duplications sire more female offspring, which directly correlates with Slxl1 gene dosage and gene expression levels. SLX and SLXL1 proteins interact with spindlin protein family members (SPIN1 and SSTY1/2) and males carrying Slxl1 deletions downregulate a sex chromatin modifier, Scml2, leading us to speculate that Slx and Slxl1 function in chromatin regulation. Our study demonstrates how newly acquired X-linked genes can rapidly evolve new and essential functions and how gene amplification can increase sex chromosome transmission.
Assuntos
Fertilidade/genética , Genes Ligados ao Cromossomo X/genética , Família Multigênica/genética , Cromossomos Sexuais/genética , Razão de Masculinidade , Animais , Feminino , Dosagem de Genes , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBARESUMO
The ubiquitin proteasome system regulates meiotic recombination in yeast through its association with the synaptonemal complex, a 'zipper'-like structure that holds homologous chromosome pairs in synapsis during meiotic prophase I. In mammals, the proteasome activator subunit PA200 targets acetylated histones for degradation during somatic DNA double strand break repair and during histone replacement during spermiogenesis. We investigated the role of the testis-specific proteasomal subunit α4s (PSMA8) during spermatogenesis, and found that PSMA8 was localized to and dependent on the central region of the synaptonemal complex. Accordingly, synapsis-deficient mice show delocalization of PSMA8. Moreover, though Psma8-deficient mice are proficient in meiotic homologous recombination, there are alterations in the proteostasis of several key meiotic players that, in addition to the known substrate acetylated histones, have been shown by a proteomic approach to interact with PSMA8, such as SYCP3, SYCP1, CDK1 and TRIP13. These alterations lead to an accumulation of spermatocytes in metaphase I and II which either enter massively into apoptosis or give rise to a low number of aberrant round spermatids that apoptose before histone replacement takes place.
Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , Metáfase/genética , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Animais , Apoptose/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Complexo Sinaptonêmico/metabolismo , Testículo/citologia , Testículo/metabolismoRESUMO
Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of neonatal testes reveals several cell subsets, including cell populations with characteristics of primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker genes. We identify protein markers for the most primitive SPG state, allowing us to purify this likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in both neonatal and adult testes and trace their developmental trajectories. Our data provide a blueprint of the developing human male germline and supporting somatic cells. The PGC-like and SSC markers are candidates to be used for SSC therapy to treat infertility.