RESUMO
BACKGROUND: ARID1A/ARID1B haploinsufficiency leads to Coffin-Siris syndrome, duplications of ARID1A lead to a distinct clinical syndrome, whilst ARID1B duplications have not yet been linked to a phenotype. METHODS: We collected patients with duplications encompassing ARID1A and ARID1B duplications. RESULTS: 16 ARID1A and 13 ARID1B duplication cases were included with duplication sizes ranging from 0.1-1.2 Mb(1-44 genes) for ARID1A and 0.9-10.3 Mb(2-101 genes) for ARID1B. Both groups shared features, with ARID1A patients having more severe intellectual disability, growth delay and congenital anomalies. DNA methylation analysis showed that ARID1A patients had a specific methylation pattern in blood, which differed from controls and from patients with ARID1A or ARID1B loss-of-function variants. ARID1B patients appeared to have a distinct methylation pattern, similar to ARID1A duplication patients, but further research is needed to validate these results. Five cases with duplications including ARID1A or ARID1B initially annotated as duplications of uncertain significance were evaluated using PhenoScore and DNA methylation re-analysis, resulting in the reclassification of two ARID1A and two ARID1B duplications as pathogenic. CONCLUSION: Our findings reveal that ARID1B duplications manifest a clinical phenotype and ARID1A duplications have a distinct episignature that overlaps with that of ARID1B duplications, providing further evidence for a distinct and emerging BAFopathy caused by whole gene duplication rather than haploinsufficiency.
RESUMO
The Koolen-de Vries Syndrome Foundation was founded in 2013 with the mission to educate, increase awareness, promote research and develop treatments for individuals living with Koolen-de Vries Syndrome (KdVS) and their families. With this aim, the foundation has focused on: developing scientific resources through patient cell and animal models, providing seed funding to basic and clinical researchers, establishing a natural history study of KdVS and increasing patient engagement. Projects have been prioritized across these areas of focus with an emphasis on expanding international research on KdVS, supporting translational research, establishing an international natural history study and conducting studies to assess patient priorities. With the incredible growth amongst our research and patient community in the last decade, our goal is to have our first clinical trial for KdVS in 2026.
Koolen de-Vries Syndrome: a journey from diagnosis to treatments The Koolen-de Vries Syndrome Foundation ('KdVSF') was founded in 2013 with the mission to develop treatments for all individuals diagnosed with KdVS. With this aim, we have focused on several research priorities for our community: developing cell and animal models for KdVS for our researchers to utilize for experiments, providing research grants to KdVS basic and clinical researchers, establishing a natural history study of KdVS and increasing patient engagement and diversity. The KdVS research and patient community has expanded tremendously over the last decade, and there is growing excitement over the possible treatments currently being investigated amongst KdVS researchers. With our current focus on translational research and research aimed at identifying treatment strategies in KdVS patients, our goal is to have our first clinical trial for KdVS in late 2026.
RESUMO
The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Estudos de Associação Genética , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Fenótipo , Humanos , Histona-Lisina N-Metiltransferase/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA/genética , Feminino , Masculino , Criança , Pré-Escolar , Antígenos de Histocompatibilidade/genética , Adolescente , Cardiopatias Congênitas/genética , Haploinsuficiência/genética , MutaçãoRESUMO
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Assuntos
Proteína Fosfatase 2C , Superóxido Dismutase-1 , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2C/genética , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Linhagem Celular Tumoral , Leucemia/genética , Sistemas CRISPR-Cas , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mutações Sintéticas Letais , MutaçãoRESUMO
The prevalence of comorbidities in individuals with neurodevelopmental disorders (NDDs) is not well understood, yet these are important for accurate diagnosis and prognosis in routine care and for characterizing the clinical spectrum of NDD syndromes. We thus developed PhenomAD-NDD, an aggregated database containing the comorbid phenotypic data of 51,227 individuals with NDD, all harmonized into Human Phenotype Ontology (HPO), with in total 3,054 unique HPO terms. We demonstrate that almost all congenital anomalies are more prevalent in the NDD population than in the general population, and the NDD baseline prevalence allows for an approximation of the enrichment of symptoms. For example, such analyses of 33 genetic NDDs show that 32% of enriched phenotypes are currently not reported in the clinical synopsis in the Online Mendelian Inheritance in Man (OMIM). PhenomAD-NDD is open to all via a visualization online tool and allows us to determine the enrichment of symptoms in NDD.
Assuntos
Comorbidade , Transtornos do Neurodesenvolvimento , Fenômica , Fenótipo , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Prevalência , Criança , Masculino , Feminino , Adolescente , Pré-EscolarRESUMO
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Assuntos
Metilação de DNA , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , CriançaRESUMO
Intellectual disability (ID) is a diverse neurodevelopmental condition and almost half of the cases have a genetic etiology. SGIP1 acts as an endocytic protein that influences the signaling of receptors in neuronal systems related to energy homeostasis through its interaction with endophilins. This study focuses on the generation and characterization of induced pluripotent stem cells (iPSC) from two unrelated patients due to a frameshift variant (c.764dupA, NM_032291.4) and a splice donor site variant (c.74 + 1G > A, NM_032291.4) in the SGIP1 gene.
Assuntos
Homozigoto , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Feminino , Linhagem Celular , CriançaRESUMO
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell-type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
RESUMO
The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.
Assuntos
Haploinsuficiência , Transtornos do Desenvolvimento da Linguagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Predisposição Genética para Doença , Haploinsuficiência/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Fenótipo , Proteínas de Neoplasias/genéticaRESUMO
Mutations in ADNP result in Helsmoortel-Van der Aa syndrome. Here, we describe the first de novo intronic deletion, affecting the splice-acceptor site of the first coding ADNP exon in a five-year-old girl with developmental delay and autism. Whereas exome sequencing failed to detect the non-coding deletion, genome-wide CpG methylation analysis revealed an episignature suggestive of a Helsmoortel-Van der Aa syndrome diagnosis. This diagnosis was further supported by PhenoScore, a novel facial recognition software package. Subsequent whole-genome sequencing resolved the three-base pair ADNP deletion c.[-5-1_-4del] with transcriptome sequencing showing this deletion leads to skipping of exon 4. An N-terminal truncated protein could not be detected in transfection experiments with a mutant expression vector in HEK293T cells, strongly suggesting this is a first confirmed diagnosis exclusively due to haploinsufficiency of the ADNP gene. Pathway analysis of the methylome indicated differentially methylated genes involved in brain development, the cytoskeleton, locomotion, behavior, and muscle development. Along the same line, transcriptome analysis identified most of the differentially expressed genes as upregulated, in line with the hypomethylated CpG episignature and confirmed the involvement of the cytoskeleton and muscle development pathways that are also affected in patient cell lines and animal models. In conclusion, this novel mutation for the first time demonstrates that Helsmoortel-Van der Aa syndrome can be caused by a loss-of-function mutation. Moreover, our study elegantly illustrates the use of EpiSignatures, WGS and Phenoscore as novel complementary diagnostic tools in case a of negative WES result.
Assuntos
Proteínas do Tecido Nervoso , Sítios de Splice de RNA , Humanos , Feminino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pré-Escolar , Células HEK293 , Mutação com Perda de Função , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno do Espectro Autista , Cardiopatias , Fácies , Transtornos do NeurodesenvolvimentoRESUMO
Pathogenic variants in KANSL1 and 17q21.31 microdeletions are causative of Koolen-de Vries syndrome (KdVS), a neurodevelopmental syndrome with characteristic facial dysmorphia. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes have identifiable patterns of DNA methylation (DNAm) change: DNAm signatures or episignatures. Given the role of KANSL1 in histone acetylation, we tested whether variants underlying KdVS are associated with a DNAm signature. We profiled whole-blood DNAm for 13 individuals with KANSL1 variants, four individuals with 17q21.31 microdeletions, and 21 typically developing individuals, using Illumina's Infinium EPIC array. In this study, we identified a robust DNAm signature of 456 significant CpG sites in 8 individuals with KdVS, a pattern independently validated in an additional 7 individuals with KdVS. We also demonstrate the diagnostic utility of the signature and classify two KANSL1 VUS as well as four variants in individuals with atypical clinical presentation. Lastly, we investigated tissue-specific DNAm changes in fibroblast cells from individuals with KdVS. Collectively, our findings contribute to the understanding of the epigenetic landscape related to KdVS and aid in the diagnosis and classification of variants in this structurally complex genomic region.
Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Cromossomos Humanos Par 17 , Metilação de DNA , Genes Reguladores , Deficiência Intelectual/genética , Deficiência Intelectual/diagnósticoRESUMO
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
RESUMO
The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.
Assuntos
Ontologias Biológicas , Humanos , Fenótipo , Genômica , Algoritmos , Doenças RarasRESUMO
OBJECTIVES: Koolen-de Vries Syndrome (KdVS) is a rare multisystem neurodevelopmental disorder. Ocular manifestations, including strabismus, ptosis, and hyperopia, have been reported in KdVS patients, but detailed clinical data are limited. This study aims to investigate the already known ocular malformations and their frequency while uncovering novel ocular associations. METHODS: This was an international cross-sectional study. An anonymous questionnaire was sent to 237 KdVS patients registered in the GenIDA database. The questionnaire inquired about demographic data, ocular symptoms, findings reported by ophthalmologists, and ophthalmologic surgical interventions. The main outcome measures included ocular findings and surgical interventions. RESULTS: Sixty-seven respondents worldwide completed the questionnaire, most (nâ¯=â¯53; 79%) under 18 years of age. Ophthalmologic abnormalities, noted in 79% of patients, included refractive errors (nâ¯=â¯35; 52.2%), strabismus (nâ¯=â¯23; 34.3%), amblyopia (nâ¯=â¯13; 19.5%), and eyelid ptosis (nâ¯=â¯9; 13.4%). Lacrimal disorders were present (nâ¯=â¯6; 9.0%), as were retinal findings (nâ¯=â¯7; 10.4%), including retinal hyperpigmentation or hypopigmentation (nâ¯=â¯4; 7.5%), Sjögren's pigment epithelial reticular dystrophy (nâ¯=â¯1; 1.5%), and macular chorioretinal coloboma (nâ¯=â¯1; 1.5%). Other manifestations included ocular surface disorders (nâ¯=â¯5; 7.5%), cataracts (nâ¯=â¯3; 4.5%), Brown syndrome (nâ¯=â¯1; 1.5%), glaucoma (nâ¯=â¯1; 1.5%), cerebral visual impairment (nâ¯=â¯1; 1.5%), and optic atrophy (nâ¯=â¯1; 1.5%). Fourteen patients (20.8%) had undergone surgical interventions. CONCLUSIONS: KdVS is associated with various ophthalmic findings, such as amblyopia, refractive errors, strabismus, and eyelid ptosis. We describe, for the first time, a high rate of nasolacrimal disorders and retinal abnormalities consisting mainly of pigmentary findings, including a rare case of Sjögren's pigment epithelial reticular dystrophy. A comprehensive ophthalmic evaluation is therefore recommended for all KdVS patients at initial diagnosis or at 4-6 months of age for diagnosed newborns.
RESUMO
Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.
Assuntos
Inteligência Artificial , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Fenótipo , Algoritmos , Aprendizado de Máquina , Variação Biológica da População , Proteínas de Ligação a DNA , Fatores de TranscriçãoRESUMO
PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.
Assuntos
Anormalidades Craniofaciais , Hipospadia , Masculino , Humanos , Hipospadia/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/genética , Proteínas de Ligação a RNA/genéticaRESUMO
The Koolen-de Vries syndrome (KdVS) is a multisystem disorder characterized by developmental delay, intellectual disability, characteristic facial features, epilepsy, cardiovascular and urogenital malformations, and various musculoskeletal disorders. Scoliosis is a common feature. The aim of this study is to fill the gap in the current knowledge about scoliosis in individuals with KdVS and to provide recommendations for management and follow-up. In total, 54 individuals with KdVS were included in the study, with a mean age of 13.6 years (range 1.9-38.8 years). Spine radiographs, MR scans, and corresponding radiology reports were analyzed retrospectively for scoliosis and additional anomalies. The presence of scoliosis-related clinical conditions was assessed in participants' medical records and by use of a parent survey. Scoliosis was present in 56% of the participants (30/54) with a mean age of onset of 10.6 years and curve progression during the growth spurt. Prevalence at age 6, 10, and 18 years was, respectively, 9%, 41%, and 65%. Most participants were diagnosed with a single curve (13/24, 54%), of which five participants had a long C-curve type scoliosis. No significant risk factors for development of scoliosis could be identified. Severity was mostly classified as mild, although 29% (7/24) of the curves were larger than 30° at last follow-up. Bracing therapy was received in 13% (7/54), and surgical spinal fusion was warranted in 6% (3/54). Remarkably, participants with scoliosis received less often physical therapy compared to participants without scoliosis (P = 0.002). Scoliosis in individuals with KdVS should be closely monitored and radiologic screening for scoliosis and vertebrae abnormalities is recommended at diagnosis of KdVS, and the age of 10 and 18 years.
Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Escoliose , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/epidemiologia , Escoliose/diagnóstico por imagem , Escoliose/epidemiologia , Estudos Retrospectivos , Anormalidades Múltiplas/diagnósticoRESUMO
Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.