Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(17): 20260-20268, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886258

RESUMO

Three-dimensional (3D) printed, hierarchically porous nickel molybdenum (NiMo) electrocatalysts were synthesized and evaluated in a flow-through configuration for the hydrogen evolution reaction (HER) in 1.0 M KOH(aq) in a simple electrochemical H-cell. 3D NiMo electrodes possess hierarchically porous structures because of the resol-based aerogel precursor, which generates superporous carbon aerogel as a catalyst support. Relative to a traditional planar electrode configuration, the flow-through configuration allowed efficient removal of the hydrogen bubbles from the catalyst surface, especially at high operating current densities, and significantly decreased the overpotentials required for HER. An analytical model that accounted for the electrokinetics of HER as well as the mass transport with or without the flow-through configuration was developed to quantitatively evaluate voltage losses associated with kinetic overpotentials and ohmic resistance due to bubble formation in the porous electrodes. The chemical composition, electrochemical surface area (ECSA), and roughness factor (RF) were also systematically studied to assess the electrocatalytic performance of the 3D printed, hierarchically porous NiMo electrodes. An ECSA of 25163 cm2 was obtained with the highly porous structures, and an average overpotential of 45 mV at 10 mA cm-2 was achieved over 24 h by using the flow-through configuration. The flow-through configuration evaluated in the simple H-cell achieved high electrochemical accessible surface areas for electrochemical reactions and provided useful information for adaption of the porous electrodes in flow cells.

2.
J Phys Condens Matter ; 32(49): 495803, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32914765

RESUMO

The role of finite size effects on magnetic order has been investigated in samarium nanoparticles prepared by physical vapor deposition. A dense layer composed of distinct nanoparticles with a mean particle diameter of 26 nm was deposited on a diamagnetic substrate. M(T) measurements identify the expected pair of antiferromagnetic ordering temperatures in the bulk Sm precursor, at 113 K and 14 K, where the magnetic unit cell for the lower ordering temperature is 10.36 nm along the c-axis. The high temperature ordering of the hexagonal sites in the Sm nanocrystals is slightly decreased with respect to that of bulk Sm, while the low temperature transition associated with the cubic sites is significantly suppressed. The observed changes are attributed to finite size effects, with ordering suppressed as the particle radius approaches the length of the magnetic unit cell, and surface moments become more prominent.

3.
Nanoscale ; 12(11): 6545-6555, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32159198

RESUMO

Bilayer vesicles that mimic a real biological cell can be tailored to carry out a specific function by manipulating the molecular composition of the amphiphiles. These bio-inspired and bio-mimetic structures are increasingly being employed for a number of applications from drug delivery to water purification and beyond. Complex hybrid bilayers are the key building blocks for fully synthetic vesicles that can mimic biological cell membranes, which often contain a wide variety of molecular species. While the assembly and morpholgy of pure phospholid bilayer vesicles is well understood, the functionality and structure dramaticlly changes when copolymer and/or carbon nanotube porins (CNTP) are added. The aim of this study is to understand how the collective molecular interactions within hybrid vesicles affect their nanoscale structure and properties. In situ small and wide angle X-ray scattering (SAXS/WAXS) and molecular dynamics simulations (MD) are used to investigate the morphological effect of molecular interactions between polybutadiene polyethylene oxide, lipids and carbon nanotubes (CNT) within the hybrid vesicle bilayer. Within the lipid/copolymer system, the hybrid bilayer morphology transitions from phase separated lipid and compressed copolymer at low copolymer loadings to a mixed bilayer where opposing lipids are mostly separated from the inner region. This transition begins between 60 wt% and 70 wt%, with full homogenization observed by 80 wt% copolymer. The incorporation of CNT into the hybrid vesicles increases the bilayer thickness and enhances the bilayer symmetry. Analysis of the WAXS and MD indicate that the CNT-dioleoyl interactions are much stronger than the CNT-polybutadiene.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Porinas/química , Difração de Raios X
4.
Nat Commun ; 10(1): 1987, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040270

RESUMO

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

5.
Nano Lett ; 16(7): 4019-24, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322135

RESUMO

Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.


Assuntos
Nanoporos , Nanotubos de Carbono , Bicamadas Lipídicas , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Nanoscale ; 7(21): 9477-86, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25874680

RESUMO

Phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ∼30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

7.
Adv Mater ; 27(9): 1512-8, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25503328

RESUMO

The dynamic physiochemical response of a functioning graphene-based aerogel supercapacitor is monitored in operando by soft X-ray spectroscopy and interpreted through ab initio atomistic simulations. Unanticipated changes in the electronic structure of the electrode as a function of applied voltage bias indicate structural modifications across multiple length scales via independent pseudocapacitive and electric double layer charge storage channels.

8.
Methods Enzymol ; 532: 165-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188767

RESUMO

Self-assembled monolayers (SAMs) of organothiol molecules prepared on noble metal substrates are known to exert considerable influence over biomineral nucleation and growth and, as such, offer model templates for investigation of the processes of directed biomineralization. Identifying the structural evolution of SAM/crystal systems is essential for a more comprehensive understanding of the mechanisms by which organic monolayers mediate mineral growth. X-ray absorption spectroscopy (XAS) provides the attractive ability to study SAM structure at critical stages throughout the processes of crystallization in SAM/mineral systems. Here, we discuss important theoretical and experimental considerations for designing and implementing XAS studies of SAM/mineral systems.


Assuntos
Espectroscopia por Absorção de Raios X , Algoritmos , Calibragem , Cristalização , Ácidos Decanoicos/química , Ouro/química , Grafite/química , Minerais/química , Modelos Moleculares , Soluções , Compostos de Sulfidrila/química
9.
Nano Lett ; 12(6): 2763-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594309

RESUMO

X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Compostos de Selênio/química , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Ligantes
10.
Opt Express ; 19(6): 5379-85, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445176

RESUMO

Neodymium (Nd) doped amorphous silicon nitride films with various Si concentrations (Nd:SiNx) were fabricated by reactive magnetron co-sputtering followed by thermal annealing. The time dynamics of the energy transfer in Nd:SiNx was investigated, a systematic optimization of its 1.1 µm emission was performed, and the Nd excitation cross section in SiNx was measured. An active Nd:SiNx micro-disk resonator was fabricated and enhanced radiation rate at 1.1 µm was demonstrated due to stimulated emission at the whispering gallery resonant modes. These results provide an alternative approach for the engineering of Si-based optical amplifiers and lasers on a silicon nitride materials platform.

11.
J Chem Phys ; 132(2): 024710, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095697

RESUMO

At the nanoscale, the surface becomes pivotal for the properties of semiconductors due to an increased surface-to-bulk ratio. Surface functionalization is a means to include semiconductor nanocrystals into devices. In this comprehensive experimental study we determine in detail the effect of a single thiol functional group on the electronic and optical properties of the hydrogen-passivated nanodiamond adamantane. We find that the optical properties of the diamondoid are strongly affected due to a drastic change in the occupied states. Compared to adamantane, the optical gap in adamantane-1-thiol is lowered by approximately 0.6 eV and UV luminescence is quenched. The lowest unoccupied states remain delocalized at the cluster surface leaving the diamondoid's negative electron affinity intact.

12.
J Am Chem Soc ; 131(20): 6888-9, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19415891

RESUMO

We report evidence that paramagnetism in CdSe QDs can be induced via manipulation of the surface chemistry. Using SQUID magnetometry and X-ray absorption spectroscopy, we demonstrate that the paramagnetic behavior of the CdSe QDs can be varied by changing the ligand end-group functionality of the passivating layer. Contrary to previous reports, no evidence for ferromagnetism was observed. The results suggest that the paramagnetism is induced via pi back-bonding between Cd 4d orbtials and ligands with empty pi* orbitals.

13.
ACS Nano ; 3(2): 325-30, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19236067

RESUMO

The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using X-ray spectroscopy. Using X-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e., without an exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

14.
Inorg Chem ; 47(16): 7302-8, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18620385

RESUMO

Manganese silicalite-2 was synthesized at high pH using the molecular cluster Mn 12O 12(O 2CCH 3) 16 as a Mn source. The silicalite-2 (ZSM-11) materials were synthesized using 3,5-dimethyl- N, N-diethylpiperdinium hydroxide as a structure-directing agent to produce phase-pure ZSM-11 materials. No precipitation of manganese hydroxide was observed, and synthesis resulted in the incorporation of up to 2.5 mol % Mn into the silicalite-2 with direct substitution into the framework verified by the linear relationship between the unit cell volume and loading. The Mn is reduced to Mn (II) during hydrothermal synthesis and incorporated into the silicalite-2 framework during calcination at 500 degrees C. Further calcination at 750 degrees C does not affect the crystallinity but oxidizes essentially all of the Mn (II) to Mn (III) in the framework. The large difference in oxidation temperatures between the II and III oxidation states provides a means of producing relatively pure manganese(II) and manganese(III) silicalite-2 materials for applications such as catalysis.

15.
J Am Chem Soc ; 130(32): 10536-44, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18642809

RESUMO

Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 +/- 0.05 and 0.16 +/- 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

16.
J Am Chem Soc ; 129(34): 10370-81, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17672454

RESUMO

Formation of biomineral structures is increasingly attributed to directed growth of a mineral phase from an amorphous precursor on an organic matrix. While many in vitro studies have used calcite formation on organothiol self-assembled monolayers (SAMs) as a model system to investigate this process, they have generally focused on the stability of amorphous calcium carbonate (ACC) or maximizing control over the order of the final mineral phase. Little is known about the early stages of mineral formation, particularly the structural evolution of the SAM and mineral. Here we use near-edge X-ray absorption spectroscopy (NEXAFS), photoemission spectroscopy (PES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to address this gap in knowledge by examining the changes in order and bonding of mercaptophenol (MP) SAMs on Au(111) during the initial stages of mineral formation as well as the mechanism of ACC to calcite transformation during template-directed crystallization. We demonstrate that formation of ACC on the MP SAMs brings about a profound change in the morphology of the monolayers: although the as-prepared MP SAMs are composed of monomers with well-defined orientations, precipitation of the amorphous mineral phase results in substantial structural disorder within the monolayers. Significantly, a preferential face of nucleation is observed for crystallization of calcite from ACC on the SAM surfaces despite this static disorder.


Assuntos
Carbonato de Cálcio/química , Minerais/química , Fenóis/química , Compostos de Sulfidrila/química , Cristalização , Ouro/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectrofotometria
17.
Phys Rev Lett ; 98(14): 146803, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501301

RESUMO

X-ray absorption spectroscopy has been used to characterize the evolution in the conduction band (CB) density of states of CdSe quantum dots (QDs) as a function of particle size. We have unambiguously witnessed the CdSe QD CB minimum (CBM) shift to higher energy with decreasing particle size, consistent with quantum confinement effects, and have directly compared our results with recent theoretical calculations. At the smallest particle size, evidence for a pinning of the CBM is presented. Our observations can be explained by considering a size-dependent change in the angular-momentum-resolved states at the CBM.

18.
Langmuir ; 22(26): 11134-41, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154594

RESUMO

Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, photoemission spectroscopy (PES), and contact angle measurements have been used to examine the structure and bonding of self-assembled monolayers (SAMs) prepared on Au(111) from the positional isomers of mercaptobenzoic acid (MBA). The isomer of MBA and solvent chosen in SAM preparation has considerable bearing upon film morphology. Carbon K-edge NEXAFS measurements indicate that the monomers of 2-, 3-, and 4-MBA have well-defined orientations within their respective SAMs. Monomers of 3- and 4-MBA assume an upright orientation on the Au substrates in monolayers prepared using an acetic acid in ethanol solvent. The aryl ring and carboxyl group of these molecules are tilted from the surface normal by a colatitudal angle of approximately 30 degrees . Preparation of 4-MBA SAMs using pure ethanol solvent, a more traditional means of synthesis, had no appreciable effect upon the monomer orientation. Nonetheless, S(2p) PES measurements illustrate that it results in extensive bilayer formation via carboxyl group hydrogen-bonding between 4-MBA monomers. In 2-MBA monolayers prepared using acetic acid/ethanol solvent, the monomers adopt a more prostrate orientation on the Au substrates, in which the aryl ring and carboxyl group of the molecules are tilted approximately 50 degrees from the surface normal. This configuration is consistent with an interaction between both the mercaptan sulfur and carboxyl group of 2-MBA with the underlying substrate. S(2p) and C(1s) PES experiments provide supporting evidence for a bidentate interaction between 2-MBA and Au(111).

20.
Langmuir ; 20(12): 4939-44, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15984254

RESUMO

Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl chain with four CH2 units, and a carboxyl termination. Self-assembled monolayer (SAM) films ofthioctic acid adsorbed on Au(111) have been investigated with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) to determine film quality, bonding, and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkanethiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38 degrees from the surface normal. Slight angle-dependent intensity modulations in other features indicate alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66 degrees from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...