Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1373745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680500

RESUMO

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to Trichuris muris infection. Methods: We use the in vivo mouse model A20myel-KO, characterized by the deletion of the potent anti-inflammatory factor A20 (TNFAIP3) specifically in the myeloid cells, the excessive type-1 cytokine production, and the development of spontaneous arthritis. We infect A20myel-KO mice with the gastrointestinal helminth Trichuris muris and we analyzed the innate and adaptive responses. We performed RNA sequencing on sorted myeloid cells to investigate the role of A20 on macrophage polarization and type-2 immunity. Moreover, we assess in A20myel-KO mice the pharmacological inhibition of type-1 cytokine pathways on helminth clearance and the infection with Salmonella typhimurium. Results: We show that proper macrophage polarization is essential for helminth clearance, and we identify A20 as an essential myeloid factor for the induction of type-2 immune responses against Trichuris muris. A20myel-KO mice are characterized by persistent Trichuris muris infection and intestinal inflammation. Myeloid A20 deficiency induces strong classical macrophage polarization which impedes anti-helminth type-2 immune activation; however, it promotes detrimental Th1/Th17 responses. Antibody-mediated neutralization of the type-1 cytokines IFN-γ, IL-18, and IL-12 prevents myeloid-orchestrated Th1 polarization and re-establishes type-2-mediated protective immunity against T. muris in A20myel-KO mice. In contrast, the strong Th1-biased immunity in A20myel-KO mice offers protection against Salmonella typhimurium infection. Conclusions: We hereby identify A20 as a critical myeloid factor for correct macrophage polarization and appropriate adaptive mucosal immunity in response to helminth and enteric bacterial infection.


Assuntos
Resistência à Doença , Ativação de Macrófagos , Macrófagos , Tricuríase , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Camundongos , Citocinas/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Inata , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Th2/imunologia , Tricuríase/imunologia , Trichuris/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
2.
Trends Cell Biol ; 34(5): 360-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461099

RESUMO

Mutations and polymorphisms in A20/TNFAIP3 have been linked to various inflammatory disorders. However, in addition to its well-known role in inflammation, A20 also controls EDAR- and receptor activator of NF-κB (RANK)-induced NF-κB signaling, regulating the development of epidermal skin appendages and bone, respectively. Furthermore, A20 regulates synapse remodeling through a mechanism dependent on NF-κB.


Assuntos
NF-kappa B , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Humanos , Animais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor Edar/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Front Immunol ; 15: 1323409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352874

RESUMO

Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Methods: Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Results: Microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Conclusion: Collectively, these results question a generalizable role for inflammasome activation in preclinical amyloid-only models of neuroinflammation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Doenças Neuroinflamatórias , Camundongos Transgênicos , Amiloide , Proteínas Amiloidogênicas
4.
Front Immunol ; 14: 1272639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090573

RESUMO

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Assuntos
Enterocolite , Síndrome de Ativação Macrofágica , Humanos , Camundongos , Recém-Nascido , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Mutação , Síndrome de Ativação Macrofágica/genética , Enterocolite/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
5.
Sci Immunol ; 8(89): eadf4404, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000038

RESUMO

Loss-of-function mutations in the deubiquitinase OTULIN result in an inflammatory pathology termed "OTULIN-related autoinflammatory syndrome" (ORAS). Genetic mouse models revealed essential roles for OTULIN in inflammatory and cell death signaling, but the mechanisms by which OTULIN deficiency connects cell death to inflammation remain unclear. Here, we identify OTULIN deficiency as a cellular condition that licenses RIPK3-mediated cell death in murine macrophages, leading to Nlrp3 inflammasome activation and subsequent IL-1ß secretion. OTULIN deficiency uncoupled Nlrp3 inflammasome activation from gasdermin D-mediated pyroptosis, instead allowing RIPK3-dependent cell death to act as an Nlrp3 inflammasome activator and mechanism for IL-1ß release. Accordingly, elevated serum IL-1ß levels in myeloid-specific OTULIN-deficient mice were diminished by deleting either Ripk3 or Nlrp3. These findings identify OTULIN as an inhibitor of RIPK3-mediated IL-1ß release in mice.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Morte Celular , Piroptose , Inflamação/patologia
6.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
7.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37856217

RESUMO

A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Doenças Neuroinflamatórias , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/metabolismo , Linfócitos T/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
8.
EMBO Mol Med ; 15(10): e17691, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694693

RESUMO

Arthritis is the most common extra-intestinal complication in inflammatory bowel disease (IBD). Conversely, arthritis patients are at risk for developing IBD and often display subclinical gut inflammation. These observations suggest a shared disease etiology, commonly termed "the gut-joint-axis." The clinical association between gut and joint inflammation is further supported by the success of common therapeutic strategies and microbiota dysbiosis in both conditions. Most data, however, support a correlative relationship between gut and joint inflammation, while causative evidence is lacking. Using two independent transgenic mouse arthritis models, either TNF- or IL-1ß dependent, we demonstrate that arthritis develops independently of the microbiota and intestinal inflammation, since both lines develop full-blown articular inflammation under germ-free conditions. In contrast, TNF-driven gut inflammation is fully rescued in germ-free conditions, indicating that the microbiota is driving TNF-induced gut inflammation. Together, our study demonstrates that although common inflammatory pathways may drive both gut and joint inflammation, the molecular triggers initiating such pathways are distinct in these tissues.

9.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645947

RESUMO

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks+ E. coli which produce the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. It remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells and its DNA to cause harm. Using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we found that pks+ E. coli drives CRC exacerbation and tissue invasion in a colibactin-dependent manner. Using isogenic mutant strains, we further demonstrate that CRC exacerbation critically depends on expression of the E. coli type-1 pilus adhesin FimH and the F9-pilus adhesin FmlH. Blocking bacterial adhesion using a pharmacological FimH inhibitor attenuates colibactin-mediated genotoxicity and CRC exacerbation. Together, we show that the oncogenic potential of pks+ E. coli critically depends on bacterial adhesion to host epithelial cells and is critically mediated by specific bacterial adhesins. Adhesin-mediated epithelial binding subsequently allows production of the genotoxin colibactin in close proximity to host epithelial cells, which promotes DNA damage and drives CRC development. These findings present promising therapeutic avenues for the development of anti-adhesive therapies aiming at mitigating colibactin-induced DNA damage and inhibiting the initiation and progression of CRC, particularly in individuals at risk for developing CRC.

10.
Autophagy ; 19(11): 2958-2971, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615626

RESUMO

Macroautophagy/autophagy is a cellular recycling program regulating cell survival and controlling inflammatory responses in a context-dependent manner. Here, we demonstrate that keratinocyte-selective ablation of Atg16l1, an essential autophagy mediator, results in exacerbated inflammatory and neoplastic skin responses. In addition, mice lacking keratinocyte autophagy exhibit precocious onset of hair follicle growth, indicating altered activation kinetics of hair follicle stem cells (HFSCs). These HFSCs also exhibit expanded potencies in an autophagy-deficient context as shown by de novo hair follicle formation and improved healing of abrasion wounds. ATG16L1-deficient keratinocytes are markedly sensitized to apoptosis. Compound deletion of RIPK3-dependent necroptotic and CASP8-dependent apoptotic responses or of TNFRSF1A/TNFR1 reveals that the enhanced sensitivity of autophagy-deficient keratinocytes to TNF-dependent cell death is driving altered activation of HFSCs. Together, our data demonstrate that keratinocyte autophagy dampens skin inflammation and tumorigenesis but curtails HFSC activation by restraining apoptotic responses.Abbreviations: ATG16L1: autophagy related 16 like 1; DMBA: 2,4-dimethoxybenzaldehyde; DP: dermal papilla; EpdSCs: epidermal stem cells; Gas6: growth arrest specific 6; HF: hair follicle; HFSC: hair follicle stem cell; IFE: interfollicular epidermis; KRT5: keratin 5; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PMK: primary mouse keratinocyte; RIPK3: receptor-interacting serine-threonine kinase 3; scRNAseq: single-cell RNA-sequencing; SG: sebaceous gland; TEWL: transepidermal water loss; TPA: 12-O-tetradecanoylphorbol-13-acetate; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a; UMAP: uniform manifold approximation and projection.

11.
Cell Death Dis ; 14(8): 534, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598207

RESUMO

The intestinal epithelium is a single cell layer that is constantly renewed and acts as a physical barrier that separates intestinal microbiota from underlying tissues. In inflammatory bowel disease (IBD) in humans, as well as in experimental mouse models of IBD, this barrier is impaired, causing microbial infiltration and inflammation. Deficiency in OTU deubiquitinase with linear linkage specificity (OTULIN) causes OTULIN-related autoinflammatory syndrome (ORAS), a severe inflammatory pathology affecting multiple organs including the intestine. We show that mice with intestinal epithelial cell (IEC)-specific OTULIN deficiency exhibit increased susceptibility to experimental colitis and are highly sensitive to TNF toxicity, due to excessive apoptosis of OTULIN deficient IECs. OTULIN deficiency also increases intestinal pathology in mice genetically engineered to secrete excess TNF, confirming that chronic exposure to TNF promotes epithelial cell death and inflammation in OTULIN deficient mice. Mechanistically we demonstrate that upon TNF stimulation, OTULIN deficiency impairs TNF receptor complex I formation and LUBAC recruitment, and promotes the formation of the cytosolic complex II inducing epithelial cell death. Finally, we show that OTULIN deficiency in IECs increases susceptibility to Salmonella infection, further confirming the importance of OTULIN for intestinal barrier integrity. Together, these results identify OTULIN as a major anti-apoptotic protein in the intestinal epithelium and provide mechanistic insights into how OTULIN deficiency drives gastrointestinal inflammation in ORAS patients.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Animais , Humanos , Camundongos , Apoptose , Morte Celular , Inflamação
12.
Cell Death Differ ; 30(9): 2092-2103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542104

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury. Here, we report that ferroptosis, an iron-catalyzed mode of regulated cell death (RCD), contributes to MS disease progression. Active and chronic MS lesions and cerebrospinal fluid (CSF) of MS patients revealed several signs of ferroptosis, reflected by the presence of elevated levels of (labile) iron, peroxidized phospholipids and lipid degradation products. Treatment with our candidate lead ferroptosis inhibitor, UAMC-3203, strongly delays relapse and ameliorates disease progression in a preclinical model of relapsing-remitting MS. In conclusion, the results identify ferroptosis as a detrimental and targetable factor in MS. These findings create novel treatment options for MS patients, along with current immunosuppressive strategies.


Assuntos
Ferroptose , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Progressão da Doença , Axônios/metabolismo , Doença Crônica
13.
Cell Death Dis ; 14(4): 282, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080966

RESUMO

Citrobacter rodentium is an enteropathogen that causes intestinal inflammatory responses in mice reminiscent of the pathology provoked by enteropathogenic and enterohemorrhagic Escherichia coli infections in humans. C. rodentium expresses various virulence factors that target specific signaling proteins involved in executing apoptotic, necroptotic and pyroptotic cell death, suggesting that each of these distinct cell death modes performs essential host defense functions that the pathogen aims to disturb. However, the relative contributions of apoptosis, necroptosis and pyroptosis in protecting the host against C. rodentium have not been elucidated. Here we used mice with single or combined deficiencies in essential signaling proteins controlling apoptotic, necroptotic or pyroptotic cell death to reveal the roles of these cell death modes in host defense against C. rodentium. Gastrointestinal C. rodentium infections in mice lacking GSDMD and/or MLKL showed that both pyroptosis and necroptosis were dispensable for pathogen clearance. In contrast, while RIPK3-deficient mice showed normal C. rodentium clearance, mice with combined caspase-8 and RIPK3 deficiencies failed to clear intestinal pathogen loads. Although this demonstrated a crucial role for caspase-8 signaling in establishing intestinal host defense, Casp8-/-Ripk3-/- mice remained capable of preventing systemic pathogen persistence. This systemic host defense relied on inflammasome signaling, as Casp8-/-Ripk3-/- mice with combined caspase-1 and -11 deletion succumbed to C. rodentium infection. Interestingly, although it is known that C. rodentium can activate the non-canonical caspase-11 inflammasome, selectively disabling canonical inflammasome signaling by single caspase-1 deletion sufficed to render Casp8-/-Ripk3-/- mice vulnerable to C. rodentium-induced lethality. Moreover, Casp8-/-Ripk3-/- mice lacking GSDMD survived a C. rodentium infection, suggesting that pyroptosis was not crucial for the protective functions of canonical inflammasomes in these mice. Taken together, our mouse genetic experiments revealed an essential cooperation between caspase-8 signaling and GSDMD-independent canonical inflammasome signaling to establish intestinal and systemic host defense against gastrointestinal C. rodentium infection.


Assuntos
Citrobacter rodentium , Inflamassomos , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspases/metabolismo , Citrobacter rodentium/metabolismo , Gasderminas , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL
14.
Nat Rev Immunol ; 23(5): 289-303, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36380021

RESUMO

Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.


Assuntos
Inflamação , Fator de Necrose Tumoral alfa , Humanos , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Morte Celular
15.
Science ; 378(6625): 1201-1207, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520901

RESUMO

Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia , Proteínas de Membrana , Fator de Necrose Tumoral alfa , Proteínas de Transporte Vesicular , Animais , Camundongos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Dermatite/genética , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36194667

RESUMO

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Assuntos
NF-kappa B , Humanos , Animais , Camundongos
18.
Nature ; 607(7920): 784-789, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859175

RESUMO

The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.


Assuntos
Adenosina Desaminase , Inflamação , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/deficiência , Adenosina Desaminase/metabolismo , Animais , Apoptose , Doenças Autoimunes do Sistema Nervoso , Caspase 8/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Inosina/metabolismo , Intestinos/patologia , Camundongos , Necroptose , Malformações do Sistema Nervoso , Edição de RNA , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Pele/patologia
19.
EMBO Rep ; 23(7): e54339, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35574994

RESUMO

Cryopyrin-associated periodic syndromes (CAPS) are a spectrum of autoinflammatory disorders caused by gain-of-function NLRP3 mutant proteins that form hyperactive inflammasomes leading to overproduction of the pro-inflammatory cytokines IL-1ß and IL-18. Expressing the murine gain-of-function Nlrp3A350V mutant selectively in neutrophils recapitulates several autoinflammatory features of human CAPS, but the potential contribution of macrophage inflammasome hyperactivation to CAPS development is poorly defined. Here, we show that expressing Nlrp3A350V in macrophages is sufficient for driving severe multi-organ autoinflammation leading to perinatal lethality in mice. In addition, we show that macrophages contribute to autoinflammation also in adult mice, as depleting macrophages in mice ubiquitously expressing Nlrp3A350V significantly diminishes splenic and hepatic IL-1ß production. Interestingly, inflammation induced by macrophage-selective Nlrp3A350V expression does not provoke an influx of mature neutrophils, while neutrophil influx is still occurring in macrophage-depleted mice with body-wide Nlrp3A350V expression. These observations identify macrophages as important cellular drivers of CAPS in mice and support a cooperative cellular model of CAPS development in which macrophages and neutrophils act independently of each other in propagating severe autoinflammation.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Inflamassomos , Animais , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/metabolismo , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
20.
Nature ; 606(7915): 776-784, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614212

RESUMO

Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFß family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Células Dendríticas , Diabetes Mellitus , Fagocitose , Cicatrização , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Diabetes Mellitus/imunologia , Gluconeogênese , Glucose , Glicólise , Fator 15 de Diferenciação de Crescimento , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA