Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 46(2): 187-201, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30484125

RESUMO

This study details a reliable and efficient method for CRISPR-Cas9 genome engineering in the high amino acid-producing strain of Corynebacterium glutamicum, NRRL-B11474. Our investigation demonstrates that a plasmid-encoded single-guide RNA paired with different edit-encoding fragments is sufficient to generate edits without the addition of an exogenous recombinase. This approach leverages a genome-integrated copy of the cas9 gene for reduced toxicity, in combination with a single plasmid carrying the targeting guide RNA and matching edit fragment. Our study systematically investigated the impact of homology arm length on editing efficiency and demonstrates genome editing with homology arm lengths as small as 25 bp for single-nucleotide polymorphisms and 75 bp for 100 bp sequence swaps. These homology arm lengths are smaller than previously reported for other strains of C. glutamicum. Our study finds that C. glutamicum NRRL-B11474 is not amenable to efficient transformation with plasmids containing the BL1, NG2, or CC1 origins of replication. This finding differs from all previously reported approaches to plasmid-based CRISPR-Cas9 or Cpf1 editing in other strains of C. glutamicum. Two alternative origins of replication (CG1 and CASE1) can be used to successfully introduce genome edits; furthermore, our data demonstrate improved editing efficiency when guide RNAs and edit fragments are encoded on plasmids carrying the CASE1 origin of replication (compared to plasmids carrying CG1). In addition, this study demonstrates that efficient editing can be done using an integrated Cas9 without the need for a recombinase. We demonstrate that the specifics of CRISPR-Cas9 editing configurations may need to be tailored to enable different edit types in a particular strain background. Refining configuration parameters such as edit type, homology arm length, and plasmid origin of replication enables robust, flexible, and efficient CRISPR-Cas9 editing in differing genetic strain contexts.


Assuntos
Sistemas CRISPR-Cas , Corynebacterium glutamicum/genética , Edição de Genes , Deleção de Genes , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/isolamento & purificação
2.
mBio ; 7(3)2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27143389

RESUMO

UNLABELLED: In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. IMPORTANCE: This study demonstrates, for the first time, that Saccharomyces cerevisiae can be engineered to employ the carnitine shuttle for export of acetyl moieties from the mitochondria and, thereby, to act as the sole source of cytosolic acetyl-CoA. Further optimization of this ATP-independent mechanism for cytosolic acetyl-CoA provision can contribute to efficient, yeast-based production of industrially relevant compounds derived from this precursor. The strains constructed in this study, whose growth on glucose depends on a functional carnitine shuttle, provide valuable models for further functional analysis and engineering of this shuttle in yeast and other eukaryotes.


Assuntos
Acetilcoenzima A/metabolismo , Carnitina/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Meios de Cultura/química , Citosol/química , Glucose/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Metab Eng ; 36: 99-115, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27016336

RESUMO

Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.


Assuntos
Acetilcoenzima A/biossíntese , Acetilcoenzima A/genética , Coenzimas/metabolismo , Metabolismo Energético/fisiologia , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Vias Biossintéticas/fisiologia , Coenzimas/genética , Citosol/metabolismo , Melhoramento Genético/métodos , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26895788

RESUMO

Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/genética , Coenzima A-Transferases/genética , Deleção de Genes , Expressão Gênica , Engenharia Metabólica , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Complexo Piruvato Desidrogenase/genética , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
5.
FEMS Yeast Res ; 16(2): fow006, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818854

RESUMO

In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald(-) strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald(-) A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity-Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Meios de Cultura/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
Sci Rep ; 5: 12846, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243542

RESUMO

Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: NADP + shikimate ⇄ NADPH + H(+) + dehydroshikimate. The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h(-1)) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway.


Assuntos
Oxirredutases do Álcool/química , Citoplasma/metabolismo , NADP/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais , Metabolismo dos Carboidratos , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Cinética , Análise do Fluxo Metabólico , Oxirredução , Termodinâmica
7.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25743786

RESUMO

A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Engenharia Genética/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Saccharomyces cerevisiae/genética , Plasmídeos , Recombinação Genética , Transformação Genética
8.
mBio ; 5(5): e01696-14, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25336454

RESUMO

The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1ß, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker's yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacterium Enterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker's yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker's yeast as a "cell factory" for sustainable production of fuels and chemicals.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Engenharia Metabólica , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Biomassa , Meios de Cultura/química , Citosol/enzimologia , Citosol/metabolismo , Enterococcus faecalis/genética , Perfilação da Expressão Gênica , Análise do Fluxo Metabólico , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA
9.
J Biotechnol ; 192 Pt B: 383-92, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24486029

RESUMO

The flavour and fragrance compound ß-ionone, which naturally occurs in raspberry and many other fruits and flowers, is currently produced by synthetic chemistry. This study describes a synthetic biology approach for ß-ionone production from glucose by Saccharomyces cerevisiae that is partially based on polycistronic expression. Experiments with model proteins showed that the T2A sequence of the Thosea asigna virus mediated efficient production of individual proteins from a single transcript in S. cerevisiae. Subsequently, three ß-carotene biosynthesis genes from the carotenoid-producing ascomycete Xanthophyllomyces dendrorhous (crtI, crtE and crtYB) were expressed in S. cerevisiae from a single polycistronic construct. In this construct, the individual crt proteins were separated by T2A sequences. Production of the individual proteins from the polycistronic construct was confirmed by Western blot analysis and by measuring the production of ß-carotene. To enable ß-ionone production, a carotenoid-cleavage dioxygenase from raspberry (RiCCD1) was co-expressed in the ß-carotene producing strain. In glucose-grown cultures with a second phase of dodecane, ß-ionone and geranylacetone accumulated in the organic phase. Thus, by introducing a polycistronic construct encoding a fungal carotenoid pathway and an expression cassette encoding a plant dioxygenase, a novel microbial production system has been established for a fruit flavour compound.


Assuntos
Norisoprenoides/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo , Clonagem Molecular , Dioxigenases/genética , Dioxigenases/metabolismo , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rubus/enzimologia , Rubus/genética
10.
Metab Eng ; 21: 46-59, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269999

RESUMO

Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Citosol/enzimologia , Proteínas de Saccharomyces cerevisiae , Acetato-CoA Ligase/biossíntese , Acetato-CoA Ligase/genética , Acetilcoenzima A/biossíntese , Acetilcoenzima A/genética , Acetiltransferases/biossíntese , Acetiltransferases/genética , Aldeído Oxirredutases/biossíntese , Aldeído Oxirredutases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...