RESUMO
Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Quimiorradioterapia , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson's disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort's transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.
RESUMO
Advances in cellular reprogramming have radically increased the use of patient-derived cells for neurological research in vitro. However, adherence of human neurons on tissue cultureware is unreliable over the extended periods required for electrophysiological maturation. Adherence issues are particularly prominent for transferable glass coverslips, hindering imaging and electrophysiological assays. Here, we assessed thin-film plasma polymer treatments, polymeric factors, and extracellular matrix coatings for extending the adherence of human neuronal cultures on glass. We find that positive-charged, amine-based plasma polymers improve the adherence of a range of human brain cells. Diaminopropane (DAP) treatment with laminin-based coating optimally supports long-term maturation of fundamental ion channel properties and synaptic activity of human neurons. As proof of concept, we demonstrated that DAP-treated glass is ideal for live imaging, patch-clamping, and optogenetics. A DAP-treated glass surface reduces the technical variability of human neuronal models and enhances electrophysiological maturation, allowing more reliable discoveries of treatments for neurological and psychiatric disorders.
Assuntos
Células-Tronco Pluripotentes Induzidas , Aminas , Encéfalo , Humanos , Neurônios , PolímerosRESUMO
The macroautophagy/autophagy-lysosome axis enables the clearance and degradation of cytoplasmic components including protein aggregates, damaged organelles and invading pathogens. Protein aggregation and lysosomal system dysfunction in the brain are common features of several late-onset neurological disorders including Alzheimer disease. Spatial overlap between depletion of the endosomal-sorting complex retromer and MAPT/tau aggregation in the brain have been previously reported. However, whether retromer dysfunction plays a direct role in mediating MAPT aggregation remains unclear. Here, we demonstrate that the autophagy-lysosome axis is the primary mode for the clearance of aggregated species of MAPT using both chemical and genetic approaches in cell models of amyloid MAPT aggregation. We show that depletion of the central retromer component VPS35 causes a block in the resolution of autophagy. We establish that this defect underlies marked accumulation of cytoplasmic MAPT aggregates upon VPS35 depletion, and that VPS35 overexpression has the opposite effect. This work illustrates how retromer complex integrity regulates the autophagy-lysosome axis to suppress MAPT aggregation and spread.
Assuntos
Doença de Alzheimer , Autofagia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/fisiologia , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico/fisiologia , Proteínas tau/metabolismoRESUMO
The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Diagnóstico por Imagem , Neurônios/fisiologia , Optogenética , Potenciais de Ação/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Líquido Cefalorraquidiano/metabolismo , Meios de Cultura , Fluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Luz , Rede Nervosa/fisiologia , Concentração Osmolar , Ratos , Razão Sinal-Ruído , Sinapses/fisiologiaRESUMO
OBJECTIVES: Targeted immunotherapies such as chimeric antigen receptor (CAR)-T cells are emerging as attractive treatment options for glioblastoma, but rely on identification of a suitable tumor antigen. We validated a new target antigen for glioblastoma, fibroblast activation protein (FAP), by undertaking a detailed expression study of human samples. METHODS: Glioblastoma and normal tissues were assessed using immunostaining, supported by analyses of published transcriptomic datasets. Short-term cultures of glioma neural stem (GNS) cells were compared to cultures of healthy astrocytes and neurons using flow cytometry. Glioblastoma tissues were dissociated and analysed by high-parameter flow cytometry and single-cell transcriptomics (scRNAseq). RESULTS: Compared to normal brain, FAP was overexpressed at the gene and protein level in a large percentage of glioblastoma tissues, with highest levels of expression associated with poorer prognosis. FAP was also overexpressed in several paediatric brain cancers. FAP was commonly expressed by cultured GNS cells but absent from normal neurons and astrocytes. Within glioblastoma tissues, the strongest expression of FAP was around blood vessels. In fact, almost every tumor vessel was highlighted by FAP expression, whereas normal tissue vessels and cultured endothelial cells (ECs) lacked expression. Single-cell analyses of dissociated tumors facilitated a detailed characterisation of the main cellular components of the glioblastoma microenvironment and revealed that vessel-localised FAP is because of expression on both ECs and pericytes. CONCLUSION: Fibroblast activation protein is expressed by multiple cell types within glioblastoma, highlighting it as an ideal immunotherapy antigen to target destruction of both tumor cells and their supporting vascular network.
RESUMO
Advances in human cell reprogramming and induced pluripotent stem cell technologies generate tremendous potential for neuroscience studies in health and disease, while the neuroscientist toolbox for engineering a range of brain tissues and neuronal cell types is rapidly expanding. Here, we discuss how the emergence of new single-cell genomics methods may help benchmarking and optimizing the tissue engineering process. The inherent heterogeneity and variability of reprogrammed brain tissue may conceal important disease mechanisms if not accounted for by rigorous experimental design. Single-cell genomics methods may address this technical challenge and ultimately improve the development of new therapeutics for neurological and psychiatric disorders.
Assuntos
Perfilação da Expressão Gênica , Genômica , Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Neurônios , Neurociências/métodos , Organoides , HumanosRESUMO
[This corrects the article DOI: 10.3389/fnmol.2018.00261.].
RESUMO
The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently, advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq). We have built upon such technical progress to combine scRNA-seq with patch-clamping electrophysiological recording and morphological analysis of single human neurons in vitro. This new powerful method, referred to as Patch-seq, enables a thorough, multimodal profiling of neurons and permits us to expose the links between functional properties, morphology, and gene expression. Here, we present a detailed Patch-seq protocol for isolating single neurons from in vitro neuronal cultures. We have validated the Patch-seq whole-transcriptome profiling method with human neurons generated from embryonic and induced pluripotent stem cells (ESCs/iPSCs) derived from healthy subjects, but the procedure may be applied to any kind of cell type in vitro. Patch-seq may be used on neurons in vitro to profile cell types and states in depth to unravel the human molecular basis of neuronal diversity and investigate the cellular mechanisms underlying brain disorders.
RESUMO
Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.
Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Metilação de DNA , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Transcrição GênicaRESUMO
Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.
Assuntos
Encéfalo/fisiologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Humanos , Técnicas In Vitro , Neurônios/metabolismo , Técnicas de Patch-ClampRESUMO
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.