Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1441: 185-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884712

RESUMO

The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.


Assuntos
Sistema de Condução Cardíaco , Animais , Humanos , Nó Atrioventricular/fisiologia , Nó Atrioventricular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/fisiologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Transdução de Sinais , Nó Sinoatrial/fisiologia , Nó Sinoatrial/embriologia
2.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643172

RESUMO

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Genoma
3.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194974

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the mammalian heart, initiating its electrical activation and ensuring that the heart's functional cardiac output meets physiological demand. SAN dysfunction (SND) can cause complex cardiac arrhythmias that can manifest as severe sinus bradycardia, sinus arrest, chronotropic incompetence and increased susceptibility to atrial fibrillation, among other cardiac conditions. SND has a complex aetiology, with both pre-existing disease and heritable genetic variation predisposing individuals to this pathology. In this Review, we summarize the current understanding of the genetic contributions to SND and the insights that they provide into this disorder's underlying molecular mechanisms. With an improved understanding of these molecular mechanisms, we can improve treatment options for SND patients and develop new therapeutics.


Assuntos
Fibrilação Atrial , Nó Sinoatrial , Animais , Humanos , Nó Sinoatrial/patologia , Nó Sinoatrial/fisiologia , Frequência Cardíaca , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Mamíferos
4.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32808978

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos HLA-A , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T , Proteínas da Matriz Viral , Humanos , Interferon gama , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz Viral/imunologia
5.
Front Immunol ; 12: 630440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854504

RESUMO

T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8pos T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.


Assuntos
Antígenos HLA/imunologia , Linfócitos T/imunologia , Vírus/imunologia , Alelos , Reações Cruzadas , Citomegalovirus/imunologia , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 4/imunologia , Teste de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Células K562 , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...