Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38004629

RESUMO

Listeria monocytogenes (Lm) is ubiquitous in nature and known for its ability to contaminate foods during production processes. Near real-time monitoring of whole genome sequences from food and human isolates, complemented with epidemiological data, has been used in the Netherlands since 2019 to increase the speed and success rate of source finding in the case of (active) clusters. Nine clusters with 4 to 19 human cases investigated between January 2019 and May 2023 are described. Fish production sites were most often linked to outbreaks of listeriosis (six clusters), though other types of food businesses can face similar Lm problems, as the production processes and procedures determine risk. The results showed that low levels of Lm in food samples can still be linked to disease. Therefore, the investigation of a cluster of cases and deployment of the precautionary principle helps to focus on safe food and to prevent further cases. Good practice of environmental monitoring within a food business allows early detection of potential issues with food safety and helps food businesses to take appropriate measures such as cleaning to prevent regrowth of Lm and thus future outbreaks.

2.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37291695

RESUMO

AIMS: The aim of our study was to investigate the virulence and resistance of STEC from small ruminants farms in The Netherlands. Moreover, the potential transmission of STEC between animals and humans on farms was evaluated. METHODS AND RESULTS: From 182 farms, in total, 287 unique STEC isolates were successfully recovered from animal samples. In addition, STEC was isolated from eight out of 144 human samples. The most detected serotype was O146:H21; however, among other serotypes also O26:H11, O157:H7, and O182:H25 isolates were present. Whole genome sequencing covering all human isolates and 50 of the animal isolates revealed a diversity of stx1, stx2, and eae sub-types and an additional 57 virulence factors. The assessed antimicrobial resistance phenotype, as determined by microdilution, was concordant with the genetic profiles identified by WGS. WGS also showed that three of the human isolates could be linked to an animal isolate from the same farm. CONCLUSIONS: The obtained STEC isolates showed great diversity in serotype, virulence, and resistance factors. Further analysis by WGS allowed for an in-depth assessment of the virulence and resistance factors present and to determine the relatedness of human and animal isolates.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Humanos , Ovinos , Virulência/genética , Fazendas , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Países Baixos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Adesinas Bacterianas/genética , Farmacorresistência Bacteriana/genética , Cabras
3.
J Infect ; 82(2): 216-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33275955

RESUMO

OBJECTIVES: To determine the contributions of several animal and environmental sources of human campylobacteriosis and identify source-specific risk factors. METHODS: 1417 Campylobacter jejuni/coli isolates from the Netherlands in 2017-2019 were whole-genome sequenced, including isolates from human cases (n = 280), chickens/turkeys (n = 238), laying hens (n = 56), cattle (n = 158), veal calves (n = 49), sheep/goats (n = 111), pigs (n = 110), dogs/cats (n = 100), wild birds (n = 62), and surface water (n = 253). Questionnaire-based exposure data was collected. Source attribution was performed using core-genome multilocus sequence typing. Risk factors were determined on the attribution estimates. RESULTS: Cases were mostly attributed to chickens/turkeys (48.2%), dogs/cats (18.0%), cattle (12.1%), and surface water (8.5%). Of the associations identified, never consuming chicken, as well as frequent chicken consumption, and rarely washing hands after touching raw meat, were risk factors for chicken/turkey-attributable infections. Consuming unpasteurized milk or barbecued beef increased the risk for cattle-attributable infections. Risk factors for infections attributable to environmental sources were open water swimming, contact with dog faeces, and consuming non-chicken/turkey avian meat like game birds. CONCLUSIONS: Poultry and cattle are the main livestock sources of campylobacteriosis, while pets and surface water are important non-livestock sources. Foodborne transmission is only partially consistent with the attributions, as frequency and alternative pathways of exposure are significant.


Assuntos
Infecções por Campylobacter , Animais , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária , Gatos , Bovinos , Galinhas , Cães , Feminino , Tipagem de Sequências Multilocus , Países Baixos/epidemiologia , Aves Domésticas , Ovinos , Suínos
4.
PLoS One ; 14(7): e0219795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329622

RESUMO

Multidrug-resistant Salmonella enterica serovar Heidelberg isolates are frequently recovered in the Netherlands from poultry meat imported from South America. Our aim was to retrospectively assess the characteristics of the antimicrobial determinants, gene content and the clonal relatedness of 122 unique S. Heidelberg isolates from chicken meat from Brazil (n = 119) and Argentina (n = 3) that were imported between 2010 and 2015. These isolates were subjected to antimicrobial susceptibility testing, PCR and Illumina HiSeq2500 whole genome sequencing. Draft genomes were assembled to assess the gene content, and the phylogenetic relationships between isolates were determined using single nucleotide polymorphisms. Ciprofloxacin-resistance was identified in 98.4% of the isolates and 83.7% isolates showed resistance to the extended-spectrum cephalosporins cefotaxime and ceftazidime (83.6% and 82.8% respectively). Of the latter, 97.1% exhibited an AmpC phenotype and contained blaCMY-2, whereas the remaining three isolates contained an extended spectrum beta-lactamase. Of the 99 extended-spectrum cephalosporins-resistant isolates harboring CMY-2 plasmids, 56.6% contained the incompatibility group I1 replicon. Phylogenetic cluster analysis showed that all isolates from Brazil clustered together, with 49% occurring in clusters larger than 5 isolates that revealed intra-cluster similarities based on geographical location and/or resistance profiles. The remaining isolates were classified in smaller clusters or as singletons, highlighting the large diversity of S. Heidelberg in the poultry chain in Brazil that was revealed by this study. Considering the potential public health risk associated with multidrug-resistant S. Heidelberg in imported poultry, collaborative whole genome sequencing-based surveillance is needed to monitor the spread, pathogenic properties and epidemiological distribution of these isolates.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Carne/microbiologia , Aves Domésticas/microbiologia , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Sorogrupo , Sequenciamento Completo do Genoma , Animais , Antibacterianos/farmacologia , Análise por Conglomerados , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genes Bacterianos , Tipagem de Sequências Multilocus , Países Baixos , Polimorfismo de Nucleotídeo Único/genética , Salmonella enterica/efeitos dos fármacos
5.
Lancet Infect Dis ; 19(7): 778-786, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133519

RESUMO

BACKGROUND: Salmonella spp are a major cause of food-borne outbreaks in Europe. We investigated a large multi-country outbreak of Salmonella enterica serotype Enteritidis in the EU and European Economic Area (EEA). METHODS: A confirmed case was defined as a laboratory-confirmed infection with the outbreak strains of S Enteritidis based on whole-genome sequencing (WGS), occurring between May 1, 2015, and Oct 31, 2018. A probable case was defined as laboratory-confirmed infection with S Enteritidis with the multiple-locus variable-number tandem repeat analysis outbreak profile. Multi-country epidemiological, trace-back, trace-forward, and environmental investigations were done. We did a case-control study including confirmed and probable cases and controls randomly sampled from the population registry (frequency matched by age, sex, and postal code). Odds ratios (ORs) for exposure rates between cases and controls were calculated with unmatched univariable and multivariable logistic regression. FINDINGS: 18 EU and EEA countries reported 838 confirmed and 371 probable cases. 509 (42%) cases were reported in 2016, after which the number of cases steadily increased. The case-control study results showed that cases more often ate in food establishments than did controls (OR 3·4 [95% CI 1·6-7·3]), but no specific food item was identified. Recipe-based food trace-back investigations among cases who ate in food establishments identified eggs from Poland as the vehicle of infection in October, 2016. Phylogenetic analysis identified two strains of S Enteritidis in human cases that were subsequently identified in salmonella-positive eggs and primary production premises in Poland, confirming the source of the outbreak. After control measures were implemented, the number of cases decreased, but increased again in March, 2017, and the increase continued into 2018. INTERPRETATION: This outbreak highlights the public health value of multi-country sharing of epidemiological, trace-back, and microbiological data. The re-emergence of cases suggests that outbreak strains have continued to enter the food chain, although changes in strain population dynamics and fewer cases indicate that control measures had some effect. Routine use of WGS in salmonella surveillance and outbreak response promises to identify and stop outbreaks in the future. FUNDING: European Centre for Disease Prevention and Control; Directorate General for Health and Food Safety, European Commission; and National Public Health and Food Safety Institutes of the authors' countries (see Acknowledgments for full list).


Assuntos
Surtos de Doenças , Ovos/microbiologia , Estudos Epidemiológicos , Intoxicação Alimentar por Salmonella/diagnóstico , Salmonella enteritidis/isolamento & purificação , Sorogrupo , Sequenciamento Completo do Genoma , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Polônia , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia
6.
FEMS Yeast Res ; 8(1): 155-64, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17662056

RESUMO

In Saccharomyces cerevisiae the HXK2 gene, which encodes the glycolytic enzyme hexokinase II, is involved in the regulatory mechanism known as 'glucose repression'. Its deletion leads to fully respiratory growth at high glucose concentrations where the wild type ferments profusely. Here we describe that deletion of the HXK2 gene resulted in a 75% reduction in fermentative capacity. Using regulation analysis we found that the fluxes through most glycolytic and fermentative enzymes were regulated cooperatively by changes in their capacities (Vmax) and by changes in the way they interacted with the rest of the metabolism. Glucose transport and phosphofructokinase were regulated purely at the metabolic level. The reduction of fermentative capacity in the mutant was accompanied by a remarkable resilience of the remaining capacity to nutrient starvation. After starvation, the fermentative capacity of the hxk2Delta mutant was similar to that of the wild type. Based on our results and previous reports, we suggest an inverse correlation between glucose repression and the resilience of fermentative capacity towards nutrient starvation. Only a limited number of glycolytic enzyme activities changed upon starvation of the hxk2Delta mutant and we discuss to what extent this could explain the stability of the fermentative capacity.


Assuntos
Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fermentação , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glicólise , Proteínas de Saccharomyces cerevisiae
7.
Proc Natl Acad Sci U S A ; 103(7): 2166-71, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16467155

RESUMO

An important question is to what extent metabolic fluxes are regulated by gene expression or by metabolic regulation. There are two distinct aspects to this question: (i) the local regulation of the fluxes through the individual steps in the pathway and (ii) the influence of such local regulation on the pathway's flux. We developed regulation analysis so as to address the former aspect for all steps in a pathway. We demonstrate the method for the issue of how Saccharomyces cerevisiae regulates the fluxes through its individual glycolytic and fermentative enzymes when confronted with nutrient starvation. Regulation was dissected quantitatively into (i) changes in maximum enzyme activity (Vmax, called hierarchical regulation) and (ii) changes in the interaction of the enzyme with the rest of metabolism (called metabolic regulation). Within a single pathway, the regulation of the fluxes through individual steps varied from fully hierarchical to exclusively metabolic. Existing paradigms of flux regulation (such as single- and multisite modulation and exclusively metabolic regulation) were tested for a complete pathway and falsified for a major pathway in an important model organism. We propose a subtler mechanism of flux regulation, with different roles for different enzymes, i.e., "leader," "follower," or "conservative," the latter attempting to hold back the change in flux. This study makes this subtlety, so typical for biological systems, tractable experimentally and invites reformulation of the questions concerning the drives and constraints governing metabolic flux regulation.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Transporte Biológico , Saccharomyces cerevisiae/metabolismo
8.
FEBS J ; 272(7): 1616-24, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15794749

RESUMO

In both industrial fermenters and in their natural habitats, microorganisms often experience an inhomogeneous and fluctuating environment. In this paper we mimicked one aspect of this nonideal behaviour by imposing a low and oscillating extracellular glucose concentration on nonoscillating suspensions of yeast cells. The extracellular dynamics changed the intracellular dynamics--which was monitored through NADH fluorescence--from steady to equally dynamic; the latter followed the extracellular dynamics at the frequency of glucose pulsing. Interestingly, the amplitude of the oscillation of the NADH fluorescence increased with time. This increase in amplitude was sensitive to inhibition of protein synthesis, and was due to a change in the cells rather than in the medium; the cell population was 'trained' to respond to the extracellular dynamics. To examine the mechanism behind this 'training', we subjected the cells to a low and constant extracellular glucose concentration. Seventy-five minutes of adaptation to a low and constant glucose concentration induced the same increase of the amplitude of the forced NADH oscillations as did the train of glucose pulses. Furthermore, 75 min of adaptation to a low (oscillating or continuous) glucose concentration decreased the K(M) of the glucose transporter from 26 mm to 3.5 mm. When subsequently the apparent K(M) was increased by addition of maltose, the amplitude of the forced oscillations dropped to its original value. This demonstrated that the increased affinity of glucose transport was essential for the training of the cells' dynamics.


Assuntos
Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Fluorescência , NAD , Biossíntese de Proteínas/fisiologia , Transporte Proteico , Fatores de Tempo
9.
FEMS Yeast Res ; 5(6-7): 611-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15780660

RESUMO

A novel method dissecting the regulation of a cellular function into direct metabolic regulation and hierarchical (e.g., gene-expression) regulation is applied to yeast starved for nitrogen or carbon. Upon nitrogen starvation glucose influx is down-regulated hierarchically. Upon carbon starvation it is down-regulated both metabolically and hierarchically. The method is expounded in terms of its implications for diverse types of regulation. It is also fine-tuned for cases where isoenzymes catalyze the flux through a single metabolic step.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Meios de Cultura , Genômica , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Biol Rep ; 29(1-2): 255-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12241067

RESUMO

Initial attempts to increase fermentative capacity of baker's yeast focussed on the overproduction of single enzymes, which proved to be insufficient. Nowadays many components of the system are monitored simultaneously in a search for a correlation with fermentative capacity. However, this strategy has not yet proven fruitful either. Here we investigate an element previously neglected, the glucose transporter, and find that a loss of glucose transport capacity correlates with a decrease of fermentative capacity during nutrient starvation. However the correlation is not unique, suggesting that the loss of fermentative capacity cannot be attributed to an inactivation of glucose transport alone. Our results suggest the necessity to use a detailed kinetic model as an underlying working hypothesis and to use Metabolic Control Analysis to examine the pathway's control properties.


Assuntos
Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Meios de Cultura , Fermentação , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
Mol Biol Rep ; 29(1-2): 79-82, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12241080

RESUMO

The genes of E. coli are located on a circular chromosome of 4.6 million basepairs. This 1.6 mm long molecule is compressed into a nucleoid to fit inside the 1-2 microm cell in a functional format. To examine the role of DNA supercoiling as nucleoid compaction force we modulated the activity of DNA gyrase by electronic, genetic, and chemical means. A model based on physical properties of DNA and other cell components predicts that relaxation of supercoiling expands the nucleoid. Nucleoid size did not increase after reduction of DNA gyrase activity by genetic or chemical means, but nucleoids did expand upon chemical inhibition of gyrase in chloramphenicol-treated cells, indicating that supercoiling may help to compress the genome.


Assuntos
DNA Girase/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , DNA Girase/genética , Escherichia coli/metabolismo , Tamanho da Partícula
12.
Eur J Biochem ; 269(6): 1662-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11895436

RESUMO

DNA of prokaryotes is in a nonequilibrium structural state, characterized as 'active' DNA supercoiling. Alterations in this state affect many life processes and a homeostatic control of DNA supercoiling has been suggested [Menzel, R. & Gellert, M. (1983) Cell 34, 105-113]. We here report on a new method for quantifying homeostatic control of the high-energy state of in vivo DNA. The method involves making small perturbation in the expression of topoisomerase I, and measuring the effect on DNA supercoiling of a reporter plasmid and on the expression of DNA gyrase. In a separate set of experiments the expression of DNA gyrase was manipulated and the control on DNA supercoiling and topoisomerase I expression was measured [part of these latter experiments has been published in Jensen, P.R., van der Weijden, C.C., Jensen, L.B., Westerhoff, H.V. & Snoep, J.L. (1999) Eur. J. Biochem. 266, 865-877]. Of the two regulatory mechanisms via which homeostasis is conferred, regulation of enzyme activity or regulation of enzyme expression, we quantified the first to be responsible for 72% and the latter for 28%. The gene expression regulation could be dissected to DNA gyrase (21%) and to topoisomerase I (7%). On a scale from 0 (no homeostatic control) to 1 (full homeostatic control) we quantified the homeostatic control of DNA supercoiling at 0.87. A 10% manipulation of either topoisomerase I or DNA gyrase activity results in a 1.3% change of DNA supercoiling only. We conclude that the homeostatic regulation of the nonequilibrium DNA structure in wild-type Escherichia coli is almost complete and subtle (i.e. involving at least three regulatory mechanisms).


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Bacteriano/química , DNA Super-Helicoidal/química , Escherichia coli/genética , Expressão Gênica , Homeostase , Sequência de Bases , DNA Girase/metabolismo , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...